Geophysical Research Abstracts, Vol. 8, 08330, 2006 SRef-ID: © European Geosciences Union 2006



## MAP3D: a mesoscale air pollution modeling tool

**O. Couach** (1, 2), F. Kirchner (1), I. Balin (1), R. Jimenez (3) P. Ristori (4), V, Simeonov (4), B. Calpini (5), and H. van den Bergh (4)

(1) EnviroScopY SA (start-up project), PSE - EPFL, CH-1015 Lausanne, Switzerland,(2)
Swiss Federal Institute of Technology, ENAC/ISTE/EFLUM, CH 1015 Lausanne,
Switzerland(3) Harvard University, Department of Earth and Planetary Sciences, Cambridge,
MA 02138, USA(4) Swiss Federal Institute of Technology, ENAC/ISTE/LPAS, CH 1015
Lausanne, Switzerland(5) MeteoSwiss, CH-1530 Payerne, SwitzerlandContact:
olivier.couach@epfl.ch , Phone: +41 21 693 6139

The assessment of the regional (e.g. mesoscale) air pollution problematic needs the development of physical-chemical based model instead of dispersion and transport) mechanisms based models. A relatively new mesoscale air pollution modeling approach, integrating new modules for impact studies and forecast) namely **MAP3D** is presented here. The potential of realistic, calibrated, validated and thus representative outputs will be illustrated for different pollutants as  $O_3$ ,  $NO_x$ ,  $CH_2O$ , CO and meteorological parameters in selected field campaigns (e.g. Grenoble, Strasbourg and Swiss Plateau). Comparisons and validation with representative 3D measurements (DOAS, LIDAR, radio- soundings, wind-profilers and aircraft) and results obtained by a combined 3D modeling - measurements approach will be shown. The item of air pollution regimes ( $NO_X/VOC$ ) and specific indicators will be also addressed. Finally the capability of MAP3D for realizing representative studies, impact and scenarios and air pollution forecast as a policy maker decision tool will be discussed.

**Keywords**: physical-chemical based modeling, 3D, mesoscale, air pollution, photochemistry, ozone, indicators, VOC, NOX, planetary boundary layers dynamics