Geophysical Research Abstracts, Vol. 8, 05660, 2006 SRef-ID: 1607-7962/gra/EGU06-A-05660 © European Geosciences Union 2006

The Atmospheric N_2O Concentration during Interglacials of the last ${\sim}800~kyr$

R. Spahni (1), J. Chappellaz (2), A. Schilt (1), L. Loulergue (2), T. Blunier (1), D. Raynaud (2) and T. F. Stocker (1)

(1) Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland, (2) Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE, CNRS-UJF), Grenoble, France (spahni@climate.unibe.ch)

Recent measurements of the N₂O concentration in air bubbles extracted along the EPICA Dome C ice core revealed the atmospheric N₂O variations over 0-220 kyr and 430-650 kyr BP. These results showed an equal mean interglacial N₂O concentration for all the interglacials covered over the last 650 kyr BP. This is in contrast to reconstructions of the atmospheric CO₂ and CH₄ concentration on the same core. They show lower interglacial values in the older time window accompanied by lower antarctic temperatures as indicated by the water isotopes on the Dome C core. Here we present the status of the N₂O measurements and extend the existing record back to ~800 kyr BP with a time resolution of at least 1500 years. These N₂O results will show if the interglacial N₂O level was indeed indifferent over time. Their relationship with CO₂ and CH₄ over the same time period will allow to discuss the biogeochemical changes on earth over two additional glacial-interglacial cycles.