Geophysical Research Abstracts, Vol. 8, 05488, 2006 SRef-ID: 1607-7962/gra/EGU06-A-05488 © European Geosciences Union 2006

The anthropogenic CO₂ increase and ¹³C Suess effect in the northern North Atlantic

A. Olsen (1,2), A. M. Omar (2,1), R. Bellerby (2,1), T. Johannessen (1,2), U. Ninnemann (3,2), Jon Olafsson (4)

(1) Geophysical Institute, University of Bergen, Norway, (2)Bjerknes Centre for Climate Research, University of Bergen, Norway, (3)Departement of Earth Science, University of Bergen, Norway, (4) University of Iceland and Marine Research Institute, Reykjavik, Iceland.

The behaviour of the northern North Atlantic as a sink for anthropogenic CO₂has received growing attention over recent years. Observations from the sub-polar North Atlantic have revealed that surface ocean pCO₂ has increased at a greater rate than the atmospheric pCO₂over the last twenty years (Lefévre et al., 2004, Friis et al., 2005). As shown in simple model calculations, this effect can come around as a result of northwards advection and cooling of water loaded with anthropogenic carbon (Wallace, 2001, Anderson and Olsen, 2002). Indeed, anthropogenic carbon transport estimates reveal a large northward transport of anthropogenic CO₂ in the North Atlantic (e.g. Macdonald et al., 2003).

Here we present results from two recent studies that address these issues. Firstly, we have reconstructed the time history of the air-sea CO₂ disequilibrium and its rate of change in the eastern subpolar North Atlantic between 1972 and 1989 (Omar & Olsen, 2006). This reconstruction show that the air-sea CO₂ disequilibrum decreased over the time period. In the second study the anthropogenic changes of CO₂ and δ^{13} C in the Nordic Seas since 1981 has been evaluated by comparing data collected during the TTO-NAS of 1981 with data collected during two recent surveys in the region (Olsen et al., 2006). The estimated $\Delta \delta^{13}$ C ant and ΔC_{ant} and their relationship to each other and to water mass distribution suggest that the Atlantic Water that enters the Nordic Seas is equilibrated with the present atmospheric anthropogenic CO₂ levels, leaving little or no room for further direct uptake from the atmosphere. In fact, the upper ocean pCO₂ in these waters appears to have increased at a greater rate than the atmospheric pCO₂ over the last two decades, as also seen further south.

Based on these and previous results we suggest that the northern North Atlantic acts as an efficient conduit of C_{ant} from surface to depth, important for sustaining the ocean carbon sink. The air-sea flux of anthropogenic CO₂ within this region is, however, limited, as most of the C_{ant} is advected into the region from further south.

Anderson L.G. and A.Olsen (2002), Air-sea flux of anthropogenic carbon dioxide in the North Atlantic, *Geophys. Res. Lett.*, 29(17), 1835, doi: 10.1029/2002GL014820.

Friis, K., A. Körtzinger, J. Pätsch, and D.W.R. Wallace (2005), On the temporal increase of anthropogenic CO_2 in the subpolar North Atlantic, *Deep-Sea Res. I*, 52, 681-698.

Lefévre, N., A. J. Watson, A. Olsen, A.F. Ríos, F.F., Pérez, and T. Johannessen (2004), A decrease in the sink for atmospheric CO₂ in the North Atlantic, *Geophys. Res. Lett.*, 31, L077306, doi: 10.1029/2003GL018957.

Macdonald, A.M., M.O. Baringer, R. Wanninkhof, K.L. Lee, and D.W.R. Wallace (2003), A 1998-1992 comparison of inorganic carbon and its transport across 24.5°N in the Atlantic, *Deep-Sea Res. II*, 50, 3041-3064

Omar, A.M. and A. Olsen, Reconstructing the time history of the air-sea CO_2 disequilibrium in the eastern

subpolar North Atlantic, 1972-1989. In press Geophysical Research Letters,.

Olsen, A., A.M. Omar, R.G.J. Bellerby, T. Johannessen, U. Ninnemann, K.R. Brown, K.A Olsson, J. Olafsson, G. Nondal, C. Kivimäe, S. Kringstad, C. Neill, and S. Olafsdottir. Magnitude and Origin of the Anthropogenic CO₂ increase and ¹³C Suess effect in the Nordic Seas Since 1981. Submitted to *Global Biogeochemical Cycles*, Dec. 2005.

Wallace, D.W.R. (2001), Storage and transport of excess CO₂ in the oceans, in: The JGOFS/WOCE global CO₂ survey, in *Ocean circulation and climate: observing and modelling the global ocean*, edited by G. Siedler, J. Church, and J. Gould, Academic Press, London, 2001