

Composition of Pickup Ions at Titan Observed by the Cassini Plasma Spectrometer

R. Hartle (1), E. Sittler Jr. (1), M. Burger (1), M. Shappirio (1), R. Johnson (2), H. Smith (2), D. Reisenfeld (3), K. Szego (4), C. Bertucci (5), F. Neubauer (6), S. Bolton (7) and D. Young (7)

(1) Goddard Space Flight Center, Greenbelt, Maryland, USA, (2) University of Virginia, Charlottesville, Virginia, USA, (3) University of Montana, Missoula, Montana, USA, (4) KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary, (5) Imperial College, London, UK, (6) University of Koln, Cologne, Germany, (7) Southwest Research Institute, San Antonio, Texas (Richard.E.Hartle@nasa.gov / Fax: 301-286-1663 / Phone: 301-286-8234)

Pickup ions have been observed in Saturn's rotating magnetosphere near Titan by the Cassini Plasma Spectrometer (CAPS) instrument during the Cassini orbiter's recent flybys of the moon. A preliminary analysis of the CAPS Time of Flight (TOF) spectra of the pickup ions observed during the TA flyby indicated the presence of H^+ , H_2^+ , N^+/CH_2^+ , CH_4^+ , and N_2^+ [1]. These ions slow down Saturn's magnetospheric plasma beyond Titan's ionosphere through mass loading. Because of its relatively high mass and high concentration, CH_4^+ is the dominant mass loading ion. The other ions make negligible contributions to the mass loading process except for N_2^+ just above the ionopause, where its concentration becomes important. With the exception of CH_2^+ , the pickup ion sources are the neutral exosphere constituents H, H_2 , N, CH_4 , and N_2 , where CH_2^+ is a fragment of the parents CH_4 and CH_4^+ . A more detailed analysis of CAPS TOF spectra and empirical cracking patterns is carried out to determine the relative concentrations of N^+ and CH_2^+ . Although, the 28 amu ion was identified as N_2^+ , consistent with the dominance of its neutral source, N_2 , just above the ionopause, the ionospheric ion HCNH^+ may also be present. The possible "leakage" of this and other ionospheric ions such as CH_5^+ into the pickup ion /mass loading region is also examined by further analysis of the corresponding TOF spectra.

[1] Hartle et al., Geophys. Res. Lett., in press, 2006.