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In 3-D resistivity modelling using the integral equation technique, the electric field
- charge density matrix equation can be written in the simplified matrix form of
E = K.Q, whereE is the electric field intensity,Q is the unknown surface elec-
tric charge density andK is the coefficient comprising several other parameters or
components. To solve these matrix equations, either direct or iterative methods may
be used. Although direct methods such as LU decomposition always provide solutions
to the matrix equations, they become inefficient when the coefficient matrix is large.
Furthermore, direct methods are more likely to be affected by round-off errors. On the
contrary, iterative (or indirect) methods for the case of large matrix equations are more
economical in computer memory requirements, and also they are self-correcting if an
error is made in the process (iterations) leading to the solution. The conjugate gra-
dient (CG) technique, which is one of the most efficient iterative methods available,
can be used for this purpose. The CG method has several algorithms. The simplest,
called the classical or ordinary conjugate gradient (OCG) algorithm, solves a matrix
equation only in the case where the coefficient matrix is symmetric and positive defi-
nite. However, the coefficient matrix in the matrix equations we are faced with here is
not necessarily symmetric or positive definite. Hence, the biconjugate gradient (BCG)
approach is used in a new application for the solution of the electric charge density in
3-D resistivity modelling problem.

Once the elements ofE andK matrices are computed using various Green’s functions
in the integral equation approach, the above matrix equation is solved forQ. This re-
quires us to compute the inverse matrixK, i.e.K−1. In the OCG method, the function
minimisation is carried out by generating a succession of search directions and im-



proved minimisers and afterN iterations the solution is obtained. However, the BCG
method, in general, does not have a simple connection with function minimisation,
and since at each iteration no function is minimised, the method is not guaranteed to
converge untilN iterations. However, the rate of convergence can be quite fast if the
eigenvalues are bunched together. Also, by preconditioning of the coefficients matrix
(i.e. matrixK here), the rate of convergence may be accelerated. This suggests that
applying a preconditioner̃K to the above equation yields the following equivalent
equation system, which is to be solved:(K̃−1.K).Q = K̃−1.E, whereK̃−1 is an
approximate inverse ofK (i.e.K̃ is close toK) so thatK̃−1.K ≈ 1. This idea allows
the algorithm to converge in fewer steps. In the computer program, developed in this
research, we have used the trivial diagonal part of the matrixK as the preconditioner
K̃.

The BCG method uses two similar conjugate search direction vectorspi andp̄i result-
ing in two residual vectorsεi andε̄i (for i = 1, 2, ....). These quantities correspond
to the matrixK and its transposeKT . We supply the initial vectorsε1 and ε̄1, and
setp1 = ε1, p̄1 = ε̄1. Then we compute quantitiesα1 andβ1 from the equations
used in this method. Solving the above matrix equation by the BCG algorithm re-
quires an initial guessQ1 for the solution. Therefore, the residualε1 is obtained as
ε1 = E−K.Q1. Using the following recurrence scheme, we build up the sequence of
improved estimates forQ: Qi+1 = Qi + αi.pi. This guarantees that the residualεi+1

corresponding toQi+1 in the recurrence is equal toE − K.Qi+1. Sinceεm+1 = 0,
Qm+1 is the solution to the above matrix equation.


