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Introduction

For systems with a linear behavior (i.e. transmissivity, storativity and boundary condi-
tions invariant on time and independent of the saturated depth), the eigenvalue method
produces an efficient solution to the groundwater flow partial differential equation,
which has found important applications. Examples of such applications are (i) the re-
alistic inclusion of aquifers in conjunctive-use models of complex systems, beyond
the single-cell aquifer representation generally used in this type of models [1], (ii)
determining a discrete in space, continuous in time, solution to the groundwater flow
equation in real cases [1,3], (iii) preliminary evaluation, through analytical solutions,
of the influence of pumping in stream depletion for simple-to-moderately complex
geometries when aquifer data is scarce [2,4].

This work presents additional analytical solutions for finite aquifers. The solution is
expressed as a linear combination of orthogonal components, what allows interpreting
each aquifer as composed by a series of linear independent cells.

Eigenvalue solution to the groundwater flow equation

In 2-D, the groundwater flow partial differential equation is



L(h) + Q(x, y) = S(x, y)
∂h

∂t
, (1)

plus adequate initial and boundary conditions, withL(·) is a lineal operator
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h(x, y, t) is the piezometric head[L], Tx(x, y) andTy(x, y) are the diagonal com-
ponents of the transmissivity tensor (the principal components of which are aligned
with the Cartesian axes of co-ordinates)[L2T−1], S(x, y) is the storage coeffi-
cient [−], and Q(x, y) are the external stresses[LT−1], which may include areal
recharge/withdrawal as well as punctual stresses.

The solution of equation (1) is given by Sahuquillo [3] as

h(x, y, t) =
∞∑

i=0

li(t)Ai(x, y),

with

li(t) =
1− e−αit

αi

∫
Ω

Q(x, y)Ai(x, y)dΩ,

with Ω representing the aquifer domain. EigenfunctionsAi [L−1], and eigenvaluesαi

[T−1] are the basic components of the solution of a classical Sturm-Liouville problem

L(A i(x, y)) + αiS(x, y)Ai(x, y) = 0,

into which the groundwater flow partial differential equation can be rewritten after
some manipulation [3].

EigenfunctionsAi(x, y) conform an orthogonal base with respect to the storage coef-
ficient. ∫

Ω

Ai(x, y)S(x, y)Aj(x, y)dΩ = δi,j ,



with δi,j being the Kronecker delta.

For a givent, valuesli(t) [L2] can be interpreted as the state representation of the
aquifer in the eigenfunction base. In this respect, the aquifer can be considered as
made of an infinite number of cells, each cell characterized by itsli(t) function. This
decomposition of the solution of the groundwater flow equation as an infinite sum of
independent components yields a very interesting interpretation of the aquifer behav-
ior:

• The total volume of the aquifer at any given timet is distributed between the
infinite number of cells according to the following expression

Vi(t) = li(t)Fi,

with

Fi =
∫

Ω

S(x, y)Ai(x, y)dΩ.

• If a river is connected to the aquifer, the inflow/outflow is also distributed be-
tween the cells according to

Qri(t) = αiVi(t),

with Qri the inflow/outflow to the river associated to celli.

• The total stress is also distributed between the cells as follows; ifQ is the total
stress, the fraction that applies to celli is biQ with

Q =
∫

Ω

Q(x, y)dΩ,

bi =

∫
Ω

Q(x, y)Ai(x, y)dΩ
Q

Fi.

It is easily demonstrated that
∑∞

ß=0 bi = 1.

Each of these cells, at any given time, has an associated volumeVi(t) given by

Vi(t) = li(t)Fi,



with

Fi =
∫

Ω

S(x, y)Ai(x, y)dΩ.

After some manipulation, for an aquifer with an initial volumeV0, the expressions for
the distribution of the inflow/outflow to the river and for the volume of each cell is
given by

Qri(t) = biQ(1− e−αit)

Vi(t) = Vi0e
−αit + biQ

1− e−αit

αi

with

Vi0 = Fi

∫
Ω

h0(x, y)S(x, y)A(x, y)dΩ

vectors{li(t), Vi(t), Qri
(t), i = 0, . . . ,∞} can be regarded as vector states of the

aquifer fully defining its state, ash(x, y, t) does. The great interest of this represen-
tation is that, in most applications of aquifer-river interaction, only a few components
are necessary to yield a good approximation of the aquifer state continuously in time.
(This is particularly true when wells are not too close to the river.)

The above discussion refers to the analyticial solution of the grounwater flow equa-
tion. But, for those cases in which the Sturm-Liouville problem cannot be solved an-
alytically, a numerical solution can be obtained by standard finite difference or fi-
nite element solutions. In such cases, the number of eigenvalues equals the number
of discretizing cells or nodes; and instead of eigenfunctions, each eigenvalue has an
eigenvector associated to it. The interpretation of the aquifer as an ensemble of cells
remains valid.

Conclusions

The eigenvalue approach provides a generic solution for the groundwater flow in any
aquifer with a linear behavior. This solutions is amenable to a physical interpretation



that helps in the understanding of the aquifer evolution and its relation with rivers.
Besides, it can be used to obtain analytical solutions for finite aquifers in cases for
which only 1D solutions existed. In this work, analytical solutions for the eigenvalues
and eigenfunctions for new cases are provided:

• Rectangular homogeneous aquifer perfectly or partially connected to one, two
or three rivers. In the case of two rivers, they can be parallel or intersecting.

• Rectangular aquifers with two bands of different properties.

• Circular sector aquifers.

• Rectangular aquifers with a partially-connected river running parallel to two
sides, not necessarily through the center line, and with a finite (larger than zero)
river width.
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