Geophysical Research Abstracts, Vol. 7, 10428, 2005 SRef-ID: 1607-7962/gra/EGU05-A-10428 © European Geosciences Union 2005

Isotopic and geochemical constraints on the enriched mantle in the Iceland plume

A. Williams (1,2), F.M. Stuart (1), R.M. Ellam (1), G. Fitton (1)

(1) School of GeoSciences, University of Edinburgh, Edinburgh, UK

(2) Isotope Geosciences Unit, Scottish Universities Environmental Research Centre, East Kilbride, UK (f.stuart@suerc.gla.ac.uk)

Post-glacial basalts from Iceland's three flank-zones - Snaefellsnes Peninsula (SNP), Eastern Flank Zone (EFZ) and the southern Eastern Rift Zone (S-ERZ) - are mildlyalkaline and are enriched in incompatible trace elements compared to rift-zone tholeiites. They are generated by small-degree melting of fertile mantle source. New He-Sr-Nd-Pb isotope data from all three provinces distinguish them from each other, from other enriched basalt provinces in the North Atlantic, eg Jan Mayen, and from the rift-zone tholeiites.. The isotope and trace element data indicate that mixing between depleted and enriched mantle components in Iceland is complex, but trends in He-Sr, He-Pb isotopes and 3 He/ 4 He-Nb/Zr space can be explained by invoking three subtly different enriched end-members.

The 100 km-long SNP in western Iceland provides a natural transect along which to study variation in the geochemistry of enriched basalts with increasing proximity to the active rift-zones. Primitive basalts from each of the three W-E aligned Quaternary volcanic systems: Snaefellsjokull, Lysuskard and Ljosufjoll. ³He/⁴He of olivine phenocrysts range from 7.7 R_A in Snaefellsjokull to 11.6 R_A in easternmost Ljosufjoll. The easterly increase in ³He/⁴He mirrors changes in ⁸⁷Sr/⁸⁶Sr (0.7035–0.7032), ²⁰⁶Pb/²⁰⁴Pb (18.9–18.7) and Nb/Zr (0.30–0.15).

Snaefell and Oraefajokull (EFZ) have similar trace element compositions (Nb/Zr = 0.10 to 0.17) but are distinct in their isotopic compositions. Snaefell basalts are characterised by 87 Sr/ 86 Sr of 0.7032–0.7034 and 143 Nd/ 144 Nd = 0.5130, and 3 He/ 4 He and 206 Pb/ 204 Pb of Snaefell basalts are the lowest measured in this study (6.4-6.9 R_A ; 18.5–18.6). These are isotopically similar to Jan Mayen and may be intrinsic

to the sub-North Atlantic mantle rather than the Iceland plume. Oraefajokull basalts have the most radiogenic 87 Sr/ 86 Sr compositions in Iceland (~0.7037) and are also unique amongst Icelandic basalts in that they plot above the Northern Hemisphere Reference Line in Pb isotope space. 3 He/ 4 He = 7.4–7.8 R_{A} . Basalts from the Vestmann Islands and Katla, Torfajokull and Eyjafjoll volcanoes (S-ERV) have the highest 3 He/ 4 He measured in the study (13.2–19.7 R_{A}). 3 He/ 4 He increases northwards, however, in contrast to the regional trend in the SNP. Nb/Zr (0.11–0.14), 87 Sr/ 86 Sr (0.7031–0.7033) and 206 Pb/ 204 Pb (19.0-19.4) also increase with 3 He/ 4 He.

The enriched mantle source tapped by Oraefajokull not present anywhere else in Iceland and may be compositionally related to an EM-type mantle component. The second enriched end-member is characterised by ³He/⁴He < 6 R_A , ⁸⁷Sr/⁸⁶Sr > 0.7035 and ²⁰⁶Pb/²⁰⁴Pb > 19.4 and is present throughout the flank-zones. The third enriched end-member is distinguished by less radiogenic Pb. The isotopic characteristics of these two enriched end-members suggest they may be related to a young-HIMU-type mantle component..