The highest glacio-isostatically tilted shorelines in the world, Canadian Cordillera

T.F. Johnsen (1) and T.A. Brennand (2)

(1) Department of Physical Geography and Quaternary Geology, Stockholm University, Sweden, timothy.johnsen@geo.su.se, (2) Simon Fraser University, Department of Geography, British Columbia, Canada, tabrenna@sfu.ca

To date, our understanding of the glacio-isostasy related to the Canadian Cordilleran Ice Sheet has been dominated by results from studies completed along the western, marine margin of the ice sheet. Glacio-isostatic rebound data are largely absent for the interior of the Cordilleran Ice Sheet. Such data are vital to understanding not only glacial lake paleogeographies, but also crust-ice sheet interactions. To help fill this knowledge gap, we have completed high-resolution paleo-water plane reconstructions of deglacial lakes for an area in the central region of the Cordillera Ice Sheet. These lakes developed during the decay of the Cordilleran Ice Sheet 10,000-13,000 BP.

A robust methodology was employed that has general application. This methodology entails (i) inventory of all landforms that permit inference of paleo-water planes, (ii) determining the genesis of landforms using GPR, geomorphic and sedimentologic data, (iii) surveying the position and elevation of landforms using a Differential GPS, (iv) discovering paleo-water planes using 3-D graphical assessment of water plane indicator data and statistical trend surface analysis, and (v) numerical description of paleo-water plane geometries.

Our results indicate that the differential glacio-isostatic deformation of the paleo-water planes of these lakes is among the highest in the world ($1.7-1.8 \mathrm{~m} \mathrm{~km}^{-1}$). This reflects the thin crust ($\sim 33 \mathrm{~km}$), the low viscosity mantle, the paleo-topography of the Cordilleran Ice Sheet, rapid deglaciation, the timing and size of the lakes and possible tectonic activity.

