

Structural Study of Mg-containing Silicate Glasses by Raman Spectroscopy, ²⁹Si MAS NMR and Molecular Dynamics

S. Rossano,⁽¹⁾ N. Trcera, ⁽¹⁾ M. Tarrida,⁽¹⁾ F. Farges,⁽¹⁾ and I. Farnan⁽²⁾

⁽¹⁾ Lab. des géomatériaux, Univ. de Marne la Vallée, CNRS FRE2455

5 Bd Descartes, Champs/Marne, 77454 Noisy-Champs cedex 2, France

⁽²⁾ Department of Earth Sciences, Univ. of Cambridge

Downing Street, Cambridge, CB2 3EQ, UK

Magnesium is a common transition element in silicate glasses (a few wt % in industrial and natural glasses) and its introduction in melts largely influences glass and melt properties. In crystalline systems, Mg^{2+} and Fe^{2+} often share the same sites leading to a broad range of solid solutions. For this reason, Mg^{2+} in glasses and melts is often considered as having a behaviour similar to Fe^{2+} .

In order to investigate the structural role of Mg^{2+} in glasses, we present in this study preliminary results on the structure of Mg-containing silicate glasses by Raman spectroscopy and ²⁹Si MAS NMR. In particular, effect of polymerisation and network modifier nature (Na⁺, K⁺ and Ca²⁺) are separately studied.

Experimental results are interpreted and compared to classical Molecular Dynamics simulations. A first approach of Mg^{2+} speciation in glasses is obtained by analysing the numerical models.