Geophysical Research Abstracts, Vol. 7, 10058, 2005 SRef-ID: 1607-7962/gra/EGU05-A-10058 © European Geosciences Union 2005

The heterogeneous reaction of NO_3 on laboratory flame soot.

F. Karagulian and M. J. Rossi

Laboratoire de Pollution Atmosphérique et Sol (LPAS), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

(michel.rossi@epfl.ch / FAX : +41 21 693 36 26 / Phone : +41 21 693 53 21)

Uptake experiments of NO_3 on decane flame soot were carried out under continuous molecular flow conditions at 298 \pm 2K using the thermal decomposition of N₂O₅ as a NO₃ source. Two different types of soot were produced: soot originating from a rich flame at a high fuel/oxygen ratio ('grey' soot) and soot generated from a lean flame at a low fuel/oxygen ratio ('black' soot). In situ laser detection using Resonance Enhanced Multiphoton Ionization (REMPI) was used in addition to mass spectrometry in order to specifically detect NO₂ in the presence of N₂O₅ and NO₃. At [NO₃] = (2.7 ± 1.0) x 10^{11} cm⁻³ we found a steady state uptake coefficient γ_{ss} of (0.2 ± 0.02) for both types of soot with γ_{ss} decreasing as [NO₃] increased. Adsorbed NO₃ led to an enhanced uptake of NO2 compared to pure NO2 uptake. For soot originating from a rich flame HONO is released at yields of up to 80 % on large quantities of soot and $[NO_3] =$ $(2.3 \pm 0.5) \times 10^{12} \text{cm}^{-3}$ whereas no HONO was formed on soot originating from a lean flame. The HONO yield obtained from the source emitting a mixture of NO2 and NO_3 at small $[NO_3]$ was smaller by a factor of two than pure NO_2 flow of comparable magnitude. For both grey and black soot we observed production of NO independent of the amount of soot present and of $[NO_3]$. The disappearance of NO₃ was in part accompanied by the formation of N_2O_5 according to $NO_3(ads) + NO_2(g)$? $N_2O_5(ads)$? $N_2O_5(g)$ probably due to the presence of adsorbed NO₃ on the substrate.