Geophysical Research Abstracts, Vol. 7, 09429, 2005 SRef-ID: 1607-7962/gra/EGU05-A-09429 © European Geosciences Union 2005

Separation of absorption spectra and determination of absorption cross sections of iodine oxides relevant in photolysis experiments of I2+O3 and in the atmosphere

Peter Spietz, Juan Carlos Gómez Martín, and John P. Burrows

Institute of Environmental Physics (IUP), University of Bremen, Germany (peterspietz@iup.physik.uni-bremen.de / Fax: +49 421-2184555 / Phone: +49 421-2184585)

Fast time resolved recordings of UV-Vis absorption following the photolysis of mixtures of I_2 and O_3 in bath gases N_2 and O_2 were analysed using multivariate analvsis techniques. For the first time the overlapped absorption spectra of IO($\nu' \leftarrow 0$), IO($\nu' \leftarrow \nu''$) with $\nu'' > 0$, and OIO($\nu_1', \nu_2', 0 \leftarrow 0, 0, 0$) could be separated from each other and from other underlying absorptions of I₂ and higher iodine oxides. The separated spectra presented here could be shown to be free of other absorptions to better than $\pm 3\%$. Based on this separation the absorption cross sections of all detected absorptions were determined. Used was the principle of iodine conservation, which reduces the necessary a-priori knowledge. The absorption cross section of I₂, which is the only required parameter was also checked in a separate determination. The cross sections, which by this method are independent of previously determined rate coefficients, mechanistic assumptions or cross sections are presented and discussed. The cross section results are $\sigma_{IO(\nu' \leftarrow 0)} = (3.5 \pm 0.3) \cdot 10^{-17} \text{ cm}^2/\text{molec}$ at (427.16 ± 0.05) nm and 0.12nm FWHM, $\sigma_{IO(\nu' \leftarrow 1)} = (2.0 \pm 1.1) \cdot 10^{-17} \text{ cm}^2/\text{molec}$ at (449.1±0.1)nm and 0.35nm FWHM, $\sigma_{OIO} = (1.1 \pm 0.3) \cdot 10^{-17} \text{ cm}^2/\text{molec}$ at $(549.33 \pm 0.1 \text{ nm})$ at 0.35nm FWHM. Spectra of two higher oxides were separated. One is tentatively identified as I₂O₃ with a cross section of $(2.0\pm0.4)\cdot10^{-18}$ cm²/molecule at (340.1 ± 0.1) nm and at 0.13nm FWHM. The other – also tentatively – as I_2O_2 with a cross section of (1 to 3) $\cdot 10^{-18}$ cm²/molecule at (322.1 ± 0.1)nm and at 0.13nm FWHM. All wavelength are vacuum wavelength.