Geophysical Research Abstracts, Vol. 7, 09312, 2005 SRef-ID: 1607-7962/gra/EGU05-A-09312 © European Geosciences Union 2005

Dynamical amplifier of global warming

M. Cai

Department of Meteorology, Florida State University, Tallahassee, Florida, USA

The poleward heat transport by the atmosphere and oceans reduces the equator-to-pole temperature contrast, creating a locally non-radiative equilibrium time mean state. A direct response to an increase in the atmospheric emissivity associated with anthropogenic greenhouse gases is an increase in the atmosphere equator-to-pole temperature contrasts that acts to strengthen the atmospheric poleward heat transport. As a result, part of the extra amount of energy intercepted by the low-latitude atmosphere due to an increase in its opacity is transported to high latitudes. This implies a "greenhouse-plus" ("greenhouse-minus") feedback to the high (low) latitude surface temperatures that amplifies (reduces) the initial surface warmings in high (low) latitudes. The Stefan-Boltzmann feedback suppresses the negative dynamical feedback relatively to the positive, amplifying the global mean surface temperature warming. For an anthropogenic radiative forcing of 4gm^{ty}, the dynamical amplifier alone can give rise to a difference of 0.3 K between high- and low-latitude surface warmings and 0.1 K between land and oceans, and an additional warming of 0.07 K in the global mean surface temperature in winter.