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1 A problem of spherical harmonic analysys

The observed gravitational anomalies reflect the mass distribution within the
Moon. It is useful to expand the gravitational field in a spherical harmonic form
for such a small body. Spherical harmonic analysis, however, has a drawback, if the
Bouguer anomalies (the residual anomalies subtracted the topographic contribution
from the observed gravitational anomalies) is downward continued within the Moon.
Because every coefficient of spherical harmonics of gravity models is affected by the
farside gap of the gravity field, spherical harmonic coefficients of the Bouguer anoma-
lies are also affected by the data noise. Moreover, the Bouguer anomalies tend to en-
hance the signals more as the wavelength of the component of the Bouguer anomalies
is smaller, which lead to an unrealistic internal structure model of the Moon.

Werner and Scheeres (1997) derive an analytical expression of gravity fields of a body,
using a constant-density polyhedron. Their polyhedral approach remedies the draw-
back mentioned above; there is a possibility of avoiding the effect of farside gap of
the gravity field of the Moon, because the body does not have to be modeled at a uni-
formly high resolution. Moreover, errors of calculated field can be reduced entirely to
errors in the Moon’s shape determination and the level of discretization chosen for the
shape.

In this study, we construct a suitably discretized polyhedral model of the Moon, and
examine the applicability of their polyhedral approach to the gravity inversion as to
the crustal thickness of the Moon.



2 Exterior gravitation of a polyhedron

The exterior gravitational potential of a polyhedron is analytically expressed by

U =
1
2
Gρ

 ∑
edges

re · Ee · re · Le−
∑

faces

rf · F f · rf · ωf

 (1)

(Werner and Scheeres, 1997), wherere is a vector from the observational point to
the fixed point on the edge of a face,Ee is a dyad in terms of the two face- and
edge-normal vectors associated with an edge,Le is the definite integral in terms of the
distancesa andb from the field point to the edge’s two ends and the edge lengthe. rf

is a vector from the field point to the arbitrary point on face.F f is simply the outer
product of face-normal vector̂nf .

Eq. (1) shows that we can calculate gravitational potential of a polyhedron by know-
ing geometrical informations of the polyhedron (i.e., the location of vertices and the
direction of a normal vector of each face) as well as the location of the observational
point.

3 Model check

To start, we make a preliminary shape model of the Moon by using the Marching
Cubes Algorithm (Lorensen and Cline, 1987), which extracts surface information of
the model from a 3D field. Because the model’s surface is approximated by triangle
patches of almost the same size all over the surface, this method may not be suitable
to modeling the Moon’s surface, avoiding the farside gap of the gravity field.

We calculate gravitational potential of a octahedron, which is enclosed by a sphere
of radiusR, by using the method of Werner and Scheeres (1997), and compare it
with analytical value (i.e., GM/R). The difference of gravitational potential between
numerical (i.e., using the method of Werner and Scheeres, 1997) and analytical result
at R is nominally 5%. This difference is caused by the fact that the octahedron is not
a sphere.
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