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Abstract

The paper deals with the evaluation of surface water resources for water management
problems. A neural network has been trained to predict the hydrologic behavior of the
runoff for the Tirso basin, located in Sardinia (Italy), at the S. Chiara section, by using
the monthly time unit. In particular, due to high data non-stationarity and seasonal
irregularity, typical of a Mediterranean weather regime, the role of data preprocessing
through continuous and discrete wavelet transforms has been investigated.
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1. Introduction

Monthly river flow forecast is a fundamental step for water resource system planning
and management problems, since storage-yield sequences are frequently related to
monthly periods.

Recently, artificial neural networks have been widely accepted as a potential useful
way of modelling hydrologic processes, and have been applied to a range of different
areas including rainfall-runoff, water quality, sedimentation and rainfall forecasting
(Abrahart et al., 2004), (Cannas et al. 2004), (Baratti et al., 2003).

In this paper, we present a neural network technique for one month ahead forecasting
of the runoff at the S. Chiara section in the Tirso basin located in Sardinia (Italy).
Basic data for modelling are runoff time series with a monthly time step. The imple-
mentation of different neural network models to forecast runoff in a Sardinian basin



was proposed in (Cannas et al. 2004), (Baratti et al., 2003). The results showed that
most of the neural network models could be useful in constructing a tool to support
the planning and management of water resources. The measures of efficiency obtained
with the different models, although significantly greater than those obtained with tra-
ditional autoregressive models, were still only around 40%. A sizeable increase was
obtained when the input data were manually partitioned into low, medium and high
flows before training with three individual neural networks, indicating that this pre-
processing technique warrants further investigation (Cannas et al. 2004). In fact, in
general, and in Sardinian basins in particular, rainfall and runoff time series present
high non-linearity and non-stationarity, and neural network models may not be able to
cope with these two different aspects if no pre-processing of the input and/or output
data is performed.

In this study wavelet transforms and neural networks have been applied to predict the
hydrologic behavior of the runoff for the Tirso basin, located in Sardinia (Italy), at
the S. Chiara section, by using the monthly time unit.Waveletanalysis is employed
to pre-process the data to be inputted to a traditional Multi Layer Perceptron (MLP)
neural network.

The wavelet decomposition of non-stationary time series into different scales provides
an interpretation of the series structure and extracts the significant information about
its history, using few coefficients. For these reasons, this technique is largely applied
to times series analysis of non stationary signals (Nason and Von Sachs, 1999).

1 2. Wavelet analysis

The wavelet transform of a signal is capable of providing time and frequency infor-
mation simultaneously, hence providing a time-frequency representation of the signal.

To do this, the data series is broken down by the transformation into its “wavelets”,
that are a scaled and shifted version of the mother wavelet (Nason and Von Sachs,
1999).

The Continuous Wavelet Transform (CWT) of a signalx(t) is defined as follows:

CWTΨ
x (τ, s) =

1√
|s|

+∞∫
−∞

x(t)Ψ∗
(
t− τ

s

)
dt (1)

wheres is the scale parameter,τ is the translation parameter and the ‘*’ denote the



complex conjugate. Here, the concept of frequency is replaced by that of scale, deter-
mined by the factors.

ψ 1√
|a|

∞∫
−∞

x(t) · ψ∗
[

(t−τ)
a

]
dtψ(t) is the transforming function and it is calledmother

wavelet. The term wavelet means small wave. The smallness refers to the condition
that the function is of finite length. The wave refers to the condition that it is oscil-
latory. The term mother implies that the functions used in the transformation process
are derived from one main function, the mother wavelet.

The wavelet coefficientCWTΨ
x (τ, s) is large when the signalx(t)and the wavelet

Ψ∗ (
t−τ
s

)
are similar; thus, the time series after the wavelet decomposition allows

one to have a look at the signal frequency at different scales.ψThe CWT calculation
requires a significant amount of computation time and resources. Conversely, the Dis-
crete Wavelet Transform (DWT) allows one to reduce the computation time and it is
considerably simpler to implement than CWT. High pass and low pass filters of dif-
ferent cutoff frequencies are used to separate the signal at different scales. The time
series is decomposed into one containing its trend (the approximation) and one con-
taining the high frequencies and the fast events (the detail). The scale is changed by
upsampling and downsampling operations.

DWT coefficients are usually sampled from the CWT on a dyadic grid in the space-
scale plane, i.e.,s0 = 2 andτ0 = 1, yieldings = 2j , andτ = k·2j .

The filtering procedure is repeated every time some portion of the signal correspond-
ing to some frequencies is removed, obtaining the approximation and one or more
details, depending on the chosen decomposition level.
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3. Case study

Data used in this paper are from the Tirso basin, located in Sardinia, at the S. Chiara
section. Tirso basin is of particular interest because of its geographic configuration
and water resource management as a dam was built in the S. Chiara section in 1924,
providing water resources for central Sardinia. The basin area is 2,082.01 km2 and is
characterized by the availability of detailed data from several rainfall gauges. Recently,
a new “Cantoniera Tirso” dam was built a few kilometers down the river, creating a
reservoir with a storage volume of 780 Mm3, one of the largest in Europe.



The data used for the hydrological model are limited to monthly recorded numerical
time series associated with the runoff at the considered station. In previous works
(Baratti et al., 2003) it has been verified that monthly averaged data of temperature at
gauge stations and rainfall data were not strictly correlated with the monthly runoff
behavior, hence these data are not considered here in the development of the model.

4. Performance indexes

The following measures of evaluation have been used to compare the performance of
the different models, whereN is the number of observations,Oi are the actual data
andPi are the predicted values:

Coefficient of Efficiency (Nash and Sutcliffe, 1970):

R = 1 −

N∑
i=1

(Oi − Pi)
2

N∑
i=1

(
Oi −O

)2
(2)

The seasonal Coefficient of Efficiency following the definition in Lorrai and Sechi
(Lorrai and Sechi, 1995):

Rd =
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)
− E
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(3)

whereEd =
D∑
i=d

(Pi − Ōi) andd=1 toDmonths.

Root mean squared error:

RMSE = N−1

√√√√ N∑
i=1

(Oi − Pi)
2 (4)

Mean absolute error:

MAE = N−1
N∑
i=1

|Oi − Pi| (5)

Mean higher order error function (M4E):

M4E =

NP
i=1

(Oi−Pi)
4

N (6)σ



The measures of evaluation were calculated for each model. Table 1 shows the values
reported in literature (Cannas et al., 2004) feeding the network with unpreprocessed
data and when the input data were manually partitioned into low, medium and high
flows and then used as input to three individual MLPs.

5. Data preprocessing and neural networks

The reconstruction of the hydrological system was accomplished using traditional
feedforward, MLP networks. Cross validation was used as stop criterion. For this rea-
son the data set was split into three parts: the first 40 years (480 monthly values)
are used as training set, the second 9 years (108 monthly values) are used for cross
validation while the last 20 years (240 monthly values) as test set.

The input dimension and the number of hidden nodes for every input combination
were determined with a heuristic procedure, i.e., trying different combinations of input
and hidden node numbers for reasonably small networks and keeping the topology
which gives the best result in terms of root mean square error.

Runoff series is decomposed using continuous and discrete wavelet transforms and
the obtained coefficients are given in input to one neural network or to a system of
several networks to predict the runoff one month ahead.

A sliding window was advanced one element at a time through the runoff time series
and the obtained wavelet coefficients are givenas inputs to a neural network. Thus, the
sliding window amplitude represents the network memory.

We trained different neural networks to predict either the unprocessed runoff or the
wavelet coefficients one step ahead. In the second case we trained an additional neural
network to reconstruct runoff values from the predicted wavelet coefficients.

5.1 Continuous wavelet transform

A sliding window was advanced one element at a time through the runoff time se-
ries and the obtained wavelet coefficients are givenas inputs to the neural network to
predict either the unprocessed runoff or the wavelet coefficients one step ahead.

In the second case we trained a neural network to reconstruct runoff values from
wavelet coefficients.

Wavelet decomposition was made on runoff time series. We tested different scaless,
from 1 up to 10, and different sliding window amplitudes.

In this context, dealing with a very irregular signal shape, we opted for an irregular
wavelet, the Daubechies wavelet of order 4, DB4, (Daubechies, 1992).



Test case 1

The neural network has been trained using as input the CWT coefficients and using as
outputs the same coefficients one month ahead.

A second neural network, feed with the predicted coefficients reconstructs the runoff
values.

The predicted coefficients before going trough the MLP, were normalized between –1
and 1.

We obtained the best results using only the first scale coefficients. This means that high
frequencies make up part of the process and do not represent just noise. The sliding
window amplitude was of 8 months.

Table 2 shows the performance indexes for the test set.

Test case 2

The neural network has been trained using as input the CWT coefficients and using
as outputs the corresponding runoff one month ahead. The sliding window amplitude
was of 13 months.

We obtained best results using only the first scale coefficients.

Table 3 shows the performance indexes for the test set.

As can be noted, both models present better performance with respect to the case of
unpreprocessed inputs, but perform worst than the system of networks working on
partitioned data (see Table 1).

Moreover, results obtained reconstructing runoff from wavelet predicted coefficients
through a neural network are only slightly better with respect to the case of direct
runoff prediction from wavelet coefficients. The efficiency increase is not so important
to justify the higher computational effort, due to the training of an additional network.

5.2Discrete Wavelet Transform

The runoff time series is decomposed into the approximation and detail coefficients
for different decomposition levels,l, from 1 up to4.Then, it is normalized between –1
and 1.

Test case 1

The neural network has been trained using as input the approximation coefficients at
level l and using as outputs the same coefficients one month ahead.



A second neural network, feed with the predicted coefficients reconstructs the runoff
values.

Best results have been obtained using as input the approximation coefficients at level
l = 4 and a sliding window amplitude of 8 months.

Table 4 shows the performance indexes.

Test case 2

In this case, the runoff prediction is the result of the combination of several neural
predictors:

a neural network has been trained using as input the approximation coefficients at level
l and using as outputs the same coefficients one month ahead;l neural networks have
been trained for the prediction of thel detail coefficients.

Another neural network, feed with the coefficients predicted by the previous men-
tioned networks, reconstructs the runoff values.

Best results have been obtained forl = 3 and a sliding window amplitude of 8 months.

Table 5 shows the performance indexes for the test set.

Test case 3

In this case, the neural network has been trained using as input the approximation
coefficients at levelland using as outputs the runoff one month ahead.

Best results have been obtained forl = 3 and a sliding window amplitude of 32 months.

Table 6 shows the performance indexes for the test set.

It is worth noting that we obtained the best results with the discrete wavelet transfor-
mation using the approximation coefficients at levell = 3in input and runoff values
in output. Furthermore, in this case only one neural network is necessary to obtain
the runoff forecasting, resulting in a small computational effort. This result evidences
the promising rule of the discrete wavelet transform in the neural network modeling
when faster dynamics are important in the correct understanding of the process, but
are embedded in noise.

6. Conclusions

We trained a neural network to predict the hydrologic behavior of the runoff for the
Tirso basin, located in Sardinia (Italy), at the S. Chiara section, by using the monthly
time unit. We preprocessed neural network inputs and outputs through continuous
and discrete wavelet transforms, to take into account non-stationarity and seasonal



irregularity of runoff time series.

Tests showed that the networks trained with pre-processed data present better per-
formance with respect to networks trained with undecomposed noisy raw signals. In
particular, we obtained best results preprocessing data through the discrete wavelet
transformation and training one neural network using as input the approximation co-
efficients at level three and runoff values in output.

This results, and those reported in literature with a data partitioning technique, evi-
dences the promising role of data clustering and discrete wavelet transform techniques
combination, in water flow forecasting.
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Tables

R Rd RMSE
(Mm3)1/2

MAE
(Mm3)

M4E
(Mm3)4x10−6

MLP with not
preprocessed
Input

0.42 0.38 29 19 0.5

Three MLPs
with Data Parti-
tioning

0.57 0.48 10.09 8.7 0.02

TABLE 1: Performance indexes for the test data set: Literature results

CWT R Rd RMSE
(Mm3)1/2

MAE
(Mm3)

M4E
(Mm3)4x10−6

First scale coeffi-
cients;
Sliding window
of
8 months

0.45 0.36 11.74 8.46 0.1

TABLE 2: CWT- Performance indexes for the test data set: Wavelet coefficients in
input and in output; Runoff reconstruction through a neural network.



CWT R Rd RMSE
(Mm3)1/2

MAE
(Mm3)

M4E
(Mm3)4x10−6

First scale coeffi-
cients;
Sliding window
of
13 months

0.44 0.34 11.86 8.11 0.1

TABLE 3: CWT- Performance indexes for the test data set: Wavelet coefficients in
input, runoff in output.

DWT R Rd RMSE
(Mm3)1/2

MAE
(Mm3)

M4E
(Mm3)4x10−6

Level 4
Sliding window
of
8 months

0.38 0.27 12.52 8.56 0.15

TABLE 4: DWT- Performance indexes for the test data set: Wavelet approximation
coefficients in input and in output; Runoff reconstruction through a neural network.

DWT R Rd RMSE
(Mm3)1/2

MAE
(Mm3)

M4E
(Mm3)4x10−6

Level 3
Sliding window
of
8 months

0.40 0.29 12.31 8.05 0.18

TABLE 5: DWT- Performance indexes for the test data set: Combination of several
neural predictors. Performance indexes for the test data set.

TABLE 6: DWT- Performance indexes for the test data set: Wavelet approximation
coefficients in input, runoff in output.



DWT R Rd RMSE
(Mm3)1/2

MAE
(Mm3)

M4E
(Mm3)4x10−6

Level 3
Sliding window
of
32 months

0.47 0.37 11.59 7.53 0.13


