

Prediction of Photosynthetically Active Radiation

G. Papaioannou (1), A. Sakki (1), G. Nikolidakis (1) and D. Retalis (2)

(1) Laboratory of Meteorology, Department of Applied Physics, National and Kapodistrian University of Athens, Greece

(2) Institute of Environmental Research and Sustainable Development, National Observatory of Athens, Greece

ABSTRACT

In the present study, hourly measurements of solar radiation values in the intervals 295-2800 nm and 695-2800 nm recorded simultaneously, with ultraviolet radiation in the interval 295-385 nm, at the National Observatory of Athens (37° 58' N, 23° 43' E) from January 1990 to December 1996 are used to evaluate predictions of photosynthetically active radation R_{PAB} , from simple meteorological data and total global radiation measurements. Data obtained during the period 1993-1996 are used for developing predictive relationships of daily and hourly R_{PAR}, based on various parameters as the extraterrestrial solar radiation on a horizontal surface for the PAR spectral range R_{OPAR} , the clearness index for the whole solar spectrum k_T , the dry bulb temperature T, the actual vapour pressure E_O and the daily minimum temperature T_{MIN} , rainfall R and dew point T_D . These relationships are tested on the R_{PAR} measurements taken during the period (1990-1992), reserved as an independent validation set. The results of the linear regression analysis and the 'difference measurements' between predicted and measured R_{PAR} , indicate that a relationship based on R_{OPAR} , k_T , T, and E_O is the best for hourly values (Index of agreement=0.99, R^2 =0.96, MBE=0.88%, RMSE=6.65%). When daily predictions are considered, a linear parameterization based on R_{OPAR}, k_T, T, E_O, R and T_{MIN} give the best results (Index of agreement=0.99, R² =0.98, MBE=5%, RMSE=6.27%).