Geophysical Research Abstracts, Vol. 7, 06183, 2005 SRef-ID: 1607-7962/gra/EGU05-A-06183 © European Geosciences Union 2005

N₂O emission from a drained paddy field

S. Nishimura (1), T. Sawamoto (1,2), H. Akiyama (1), S. Sudo (1), W. Cheng (1) and **K. Yagi** (1)

(1) National Institute for Agro-Environmental Sciences, Japan, (2) Now at Rakuno Gakuen University, Japan (kyagi@affrc.go.jp / +81-29-838-8234)

The seasonal courses of nitrous oxide (N_2O) fluxes from a drained paddy field were measured over one and a half years from 2002 to 2003, using an automated monitoring system with closed chambers and gas analyzing equipment. The experimental paddy field with Gray lowland soil was drained and cultivated with upland crops. Two cropping systems, single cropping of upland rice cultivation (UR) and double cropping of soybean and wheat cultivations (SW), were examined. Unlike many of the previous studies, the increase in N₂O flux which resulted in an increase in soil nitrate nitrogen content after fertilizer application was not distinctive, which suggests that the contribution of nitrification to the N2O emission is relatively small in this field. Temporal peaks of N_2O flux were often observed after heavy rainfalls, which lasted for several days. Other temporal peaks of N₂O flux were also observed after the harvest of upland rice or wheat. These temporal increase in N_2O flux suggest the dominance of denitrification as the process for N_2O production. Significantly high peaks of N_2O fluxes were observed from late-July to mid-August, 2002 in both the UR and SW plots, when upland rice and soybean are in the flowering to ripening stages. In the SW plots, another peak of N₂O flux was also observed from late-April to mid-May, 2003, when wheat was in the flowering to ripening stages. These peaks of N_2O flux suggest the significant influence of the crops during the flowering to ripening stages on the increase in N_2O emission. Although the detailed mechanisms of the N_2O production and transport remain uncertain, the influence of plants on N_2O emission, such as N_2O production in the rhizosphere or possible pathway for N_2O transport through the plant body, is indicated to be significant and will become an important subject in future studies. Annual cumulative N₂O emission in 2002 was 2.41 kg N ha⁻¹ in the UR plots, whereas cumulative N₂O emission during the whole one cycle of the double cropping was 3.19 kg N ha⁻¹ in the SW plots. The ratio of the emitted N₂O-nitrogen to the applied fertilizer nitrogen was 4.02 % in the UR plots, whereas they were 13.25 % and 0.54 % in the SW plots (soybean and wheat cultivation periods, respectively).