Geophysical Research Abstracts, Vol. 7, 05832, 2005 SRef-ID: 1607-7962/gra/EGU05-A-05832 © European Geosciences Union 2005

Can we predict mega-earthquakes

V. Kossobokov (1,2)

(1) International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russian Federation, (2) Institute de Physique du Globe de Paris, Paris, France (volodya@mitp.ru / Fax Nr. +7-095-3107032)

The December 26 event seems to be the first indication that the algorithm, designed for prediction of M8.0+ earthquakes can be rescaled for prediction of both smaller magnitude earthquakes (e.g., down to M5.5+ in Italy) and for mega-earthquakes of M9.0+. The event is not full verification, but it is very important for general understanding of our methodology and the Problem of Earthquake Prediction. The extent of the M8 algorithm M9.0+ TIPs in space and time is thought provoking. There was one cluster of TIPs in 1984-1989 around western Mediterranean (a compact union of eight out of the 262 CI's) and another one in 1994-1999 around the Cascadia subduction zone (a compact union of the five CI's off coast of the western U.S.). Neither of these produced an M9.0+ event. The union of TIPs now has a global extent (124 CI's are in alarm). The other relevant observation is that all four mega-earthquakes of the 20th century (Kamchatka, 1952/11/04, Mw9.0; Andreanoff Islands, 1957/03/09, Mw9.1; Chile, 1960/05/22, Mw9.5; Alaska, 1964/03/28, Mw9.2) happened within a narrow interval of time. Such a cluster is unlikely with a 99% confidence for uniformly distributed independent events. Since good evidence suggests that seismic events including mega-earthquakes cluster, it is possible that we will have further confirmation of M8 prediction within 5-10 years in other regions.