Geophysical Research Abstracts, Vol. 7, 05458, 2005 SRef-ID: 1607-7962/gra/EGU05-A-05458 © European Geosciences Union 2005

Trends in the Vertical Distribution of Ozone in the Lower and Middle Stratosphere

D. Brunner, J. Staehelin and J. Maeder

Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland (dominik.brunner@env.ethz.ch / Fax: +41 1 633 10 58 / Phone: +41 1 633 36 62)

We developed a new statistical method allowing to reconstruct the vertical distribution of ozone from total ozone measurements by using meteorological information on adiabatic air transport derived from ERA-40 analyses and the fact that ozone column amounts are sensitive to air mass excursions at the different isentropic layers. These two sources of information were combined using a data assimilation approach based on Kalman filtering. The method was applied to TOMS and GOME total ozone observations of the period 1979-2003 carefully homogenized by the National Institute for Water and Air research of New Zealand (NIWA) to establish a 3D data set of ozone volume mixing ratios with daily and global coverage. A standard multiple linear regression model was applied which includes explanatory variables describing the influence of the solar cycle, the QBO, volcanic eruptions, the strength of the Brewer-Dobson circulation, and Arctic ozone depletion. Here we will focus on the analysis of Northern Hemisphere ozone trends and will address the question how mid-latitude ozone variability and trends are influenced by these factors. This study complements the analysis of ozone sonde profile measurements which are measured for sufficiently long periods only at a few sites and of satellite profile measurements of SBUV and SAGE which either have a limited accuracy in the lower stratosphere (SBUV) or have a significantly reduced temporal coverage compared to total ozone observations (SAGE) impeding the analysis of long-term trends.