Geophysical Research Abstracts, Vol. 7, 05022, 2005

SRef-ID: 1607-7962/gra/EGU05-A-05022 © European Geosciences Union 2005

Validation of stratospheric NO₂ profiles from Odin/OSIRIS limb-scattered sunlight measurements

S. Brohede (1), C. S. Haley (2), and The Odin Team

(1) Department of Radio and Space Science, Chalmers University of Technology, Göteborg, (brohede@rss.chalmers.se), (2) Centre for Research in Earth and Space Science, York University, Toronto, Canada (cshaley@yorku.ca)

Number density profiles of NO_2 are retrieved from Odin/OSIRIS limb-scattered sunlight measurements using Optimum Estimation and Differential Optical Absorption Spectroscopy in the 435-451 nm window. Theoretical estimations show that a 2 km vertical resolution is achievable between 15 and 40 km with an uncertainty of about 10%. The coverage is near global except for the winter hemisphere. This work covers the validation of this data set to other space borne measurements.

The mean and standard deviations of the differences between OSIRIS NO_2 profiles and coincident POAM and SAGE solar occultation NO_2 measurements are presented, based on all available data from August 2001 to December 2004. The coincidences are sub-categorized into mid and high latitudes as well as summer fall, winter and spring comparisons.

Deviations in local solar time of the coincident measurements can affect any validation since the NO_2 density is a function of the incoming solar radiation. This is particularly true for OSIRIS comparisons due to Odin's near terminator orbit. To compensate for this, the OSIRIS NO_2 profiles are scaled to the corresponding solar zenith angle of POAM or SAGE using a tabulated chemistry model (PRATMO).