

$\delta^{15}\text{N}$ of fresh and detrital phytoplankton in a tidal estuary as calculated from $\delta^{15}\text{N}$ of ammonium

L. De Brabandere, N. Brion, F. Dehairs and W. Baeyens

Laboratory of Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Belgium
(ldebraba@vub.ac.be / Fax: +32 2-6293274 / Phone: +32 2-6293264)

Stable N isotopes are frequently used to assess seasonal variation in the trophic levels of aquatic consumers. This requires a thorough investigation of the variability of the $\delta^{15}\text{N}$ signature of the organisms at the base of the food web. However, since suspended matter is usually a mixture of terrestrial detritus, sewage, phytoplankton and microzooplankton, $\delta^{15}\text{N}$ signatures of the primary producers are difficult to assess.

Since for estuaries under anthropogenic stress NH_4^+ will often be the main nutrient assimilated by the primary producer community, the $\text{NH}_4^+ \delta^{15}\text{N}$ can be used as an efficient proxy of the $\delta^{15}\text{N}$ of primary producers. We measured the seasonal evolution of $\delta^{15}\text{N}$ signatures of NH_4^+ and calculated the *in situ* isotopic fractionation for NH_4^+ taking into account assimilation and nitrification. Then, we compared the calculated seasonal pattern of $\delta^{15}\text{N}$ of phytoplankton with the $\delta^{15}\text{N}$ pattern of copepods to assess the relative importance of phytoplankton in the diet of copepods. In addition, we show that the increase in the $\delta^{15}\text{N}$ signature of SPOM in eutrophic estuaries relative to pristine systems is mediated through the phytoplankton community and related to the intensity of NH_4^+ consumption processes enriching the $\delta^{15}\text{N}$ of NH_4^+ .