Geophysical Research Abstracts, Vol. 7, 04883, 2005 SRef-ID: 1607-7962/gra/EGU05-A-04883 © European Geosciences Union 2005

Biological oxygen productivity from triple oxygen isotope measurements from the Vostok ice core over four climatic cycles

T. Blunier (1), M.L. Bender (2), B. Barnett(2)

(1) Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland (blunier@climate.unibe.ch)

(2) Princeton University, Department of Geosciences, Guyot Hall, Princeton, NJ 08544, USA

The oxygen isotope signature of atmospheric O₂ is linked to the isotopic signature of seawater (H₂O) through photosynthesis and respiration. Fractionation during these processes is mass dependent, affecting δ^{17} O about half as much as δ^{18} O. An "anomalous" fractionation process, which changes δ^{17} O and δ^{18} O of O₂ about equally, takes place during isotope exchange between O₂ and CO₂ in the stratosphere. The relative rates of biologic O₂ production and stratospheric processing determine the relationship between δ^{17} O and δ^{18} O of O₂ in the atmosphere. Variations of this relationship thus allow us to estimate changes in the rate of mass dependent O₂ production by photosynthesis versus the rate of O₂-CO₂ exchange in the stratosphere with about equal fractionations of δ^{17} O and δ^{18} O.

We reconstruct total oxygen productivity for the last four glacial-interglacial cycles from the Vostok ice core. Preliminary model calculations translate the triple isotope data into total oxygen productivity. Generally productivity parallels the atmospheric CO_2 concentration in the past. For the previous interglacials (MIS 5,7,9) we find productivities comparable to the present interglacial. During glacials total productivity was reduced to about 80% of present.