Geophysical Research Abstracts, Vol. 7, 04610, 2005 SRef-ID: 1607-7962/gra/EGU05-A-04610 © European Geosciences Union 2005

Firn ice transition of dry polar firn at constant porosity

J. Freitag, S. Kipfstuhl and A. Lambrecht

Alfred Wegener Institute for Polar and Marine Research, P.O. Box 120161, D-27515 Bremerhaven, Germany, (Contact jfreitag@awi-bremerhaven.de)

The firn-ice transition of dry polar firn from Antarctica at Dome C (annual mean temperature: -53.9°C) and in Dronning Maud Land (-46.1°C; core B33) and from North Greenland (-30.6°C; core B26) has been investigated. Using X-ray micro computer tomography (XCT) we determined the critical density/porosity and the small scale density/porosity variations across the firn-ice transition. It is found that the firn becomes impermeable at a porosity of 0.107 although the mean temperature and snow accumulation rates at the three sites differ considerably. A porosity of 0.107 corresponds to densities of 825 kg/m3, 824 kg/m3 and 822 kg/m3, respectively (note that density is temperature dependent, while porosity is not). We suggest that the pores in dry polar firn close off at constant porosity rather than at constant density. A porosity of 0.107 may be a universal constant for the percolation threshold in polar firn. However, as natural polar firn is not an uniform stratum the transition of permeable firn to impermeable ice occurs over a wide depth range (10 to 15 m or so). There is a trend to smaller variations at colder sites. This leads us to conclude that the mean porosity at the firn-ice transition (e.g. where gravitational diffusion stops) depends primarily on stratigrafic and microstructural features and not so much on temperature. Calculations may overestimate the pore close-off depths for glacial firm when they are solely based on temperature.