Geophysical Research Abstracts, Vol. 7, 03798, 2005 SRef-ID: 1607-7962/gra/EGU05-A-03798 © European Geosciences Union 2005

Large Effect of Hydration on 18 O Fractionation between H₂O and CO₃²⁻: Implications for the pH-carbonate- δ^{18} O Relationship and Inferred Climate Changes

R.E. Zeebe

School of Ocean and Earth Science and Technology, Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI 96822, USA. email: zeebe@hawaii.edu

Stable oxygen isotope fractionation in the system $H_2O-CO_3^{2-}-HCO_3^{-}-CO_2-CaCO_3$ is fundamental both to geochemical proxy applications such as paleothermometry and as a set of physico-chemical constants. Moreover, the pH effect on carbonate- δ^{18} O plays a crucial role in a current controversy on the primary driver of Phanerozoic climate change (Shaviv and Veizer, 2003; Rahmstorf et al., 2004). Yet our understanding of the system's isotope basics is still limited. For example, the effect of hydration on the ¹⁸O fractionation between H₂O and ionic species such as $CO_3^{2-}(\alpha_{cw})$ is hitherto unknown and inaccessible to experimental means. Classical theory assumes molecules in the gas phase and predicts unrealistic α_{cw} . I have calculated the coordination of water molecules within the CO_3^{2-} hydration sphere using *ab initio* molecular orbital theory. I will propose possible structures of the $CO_3^{2-}(H_2O)_n$ cluster. The results show that the effect of hydration on α_{cw} may be as large as 10 per mil (¹⁸O enrichment), compared to a 'gas phase-ion'. My new results for α_{cw} are in agreement with recent independent experimental and theoretical efforts. These findings have important consequences for the pH effect on the carbonate- δ^{18} O proxy and for our understanding of vital effects in biogenic carbonates. Relations to δ^{18} O-paleothermometry and past climate changes that have been proposed elsewhere will be discussed.