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Introduction

According to hydrology, water flowing in an aquifer follows the three-dimensional
partial differential parabolic equation (1) [see e.g. D. K. Todd: Groundwater Hydrol-
ogy, Wiley and Sons, p.100 and p. 123 as quoted later]:

Kx
∂2h
∂x2 + Ky · ∂2h

∂y2 + Kz · ∂2h
∂z2 = S · ∂h

∂t (1)

where: h is the piezometric head; Kx,Ky, Kz are the hydraulic conductivities; S is the
specific storage.

For a vertical well in an aquifer, often isotropy can be assumed, so that all conductiv-
ities are equal to a unique value K. Under such assumption Darcy’s Law is:

J = −K · ∇h (2)

whereJ is the vector flux. If moreover h is assumed to be mainly linearly dependent
on height, equation (1) becomes the following two-dimensional parabolic equation on
piezometric head [assumed to be evaluated at height z=0 along vertical axis and to
depend on radial distance r (from vertical axis) and on time t], [p. 123 and foll.]:
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χ · ∂h
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Digital fields computed by equations (1), (3) often appear unstable due to the parabolic
nature of equation. Therefore it may be useful to compare digital fields to more precise
analytical solutions.

Table of analytical two-dimensional solutions

Solutions are obtained by assuming a product of two functions: one depending only
on time and the other one depending only on the following variable u containing time
and distance r:

u = r2

4·χ·t (4)

By introducing such factorisation into the parabolic equation (3), an equality can be
obtained. The left hand side (l.h.s.) of equality contains a first order ordinary differ-
ential equation on a function of time; whereas the right hand side (r.h.s.) of equality
contains a second order ordinary differential equation on a function of the new variable
u. Therefore l.h.s. and r.h.s. must be equal to a same separation constant. By solving
first order ordinary differential equation (for a particular separation constant), only
one function of time is obtained; whereas by solving second order ordinary differen-
tial equation (for the same separation constant) two functions of u are obtained. Each
function of u involves unconventional functions as: E functions; Laguerre polynomi-
als (alternate sequence of monomials having positive and negative signs); modified
Laguerre polynomials (same of previous polynomials but all monomials have positive
signs); Ein function; a function G appropriately defined for parabolic equation (3).

Such analytical solutions provide also water flowing from well at the appropriate
height in aquifer. In this abstract a Table is shown which provides some simple so-
lutions and also General Formulas. The list of solutions contains: the function of
time; the first and second function of u; the corresponding value of the separation
constant (Const.) [-j,...;-3;-2;-1;0;+1;+2;+3;..., +j]. Theis’s solution quoted in p. 123,
corresponds to the second solution for separation constant equal 0.

Moreover each solution in the list needs an appropriate normalization constant.

Table



Const. First solution Second solution

-j 1
(4·χ·t)j · e−u ·

[
1
j! · Lj−1(u)

]
1

(4·χ·t)j ·
j−1∑
k=0

(
j − 1
k

)
· uk · dk(G)

duk

...... ...... ......

-3 1
(4·χ·t)3 · e

−u ·
[
1− 2u + u2

]
1

(4·χ·t)3 ·
[
G + 2uG

′+u2G
′′ ]

-2 1
(4·χ·t)2 · e

−u · [1− u] 1
(4·χ·t)2 ·

[
G + uG

′
]

-1 1
(4·χ·t) · e

−u 1
(4·χ·t) · e

−u · [Ein(−u)− log(u)] = 1
(4·χ·t) ·G(u)

0 1 E1(u)
+1 (4 · χ · t) · [1 + u] (4 · χ · t) · [E1(u)− E2(u)]
+2 (4 · χ · t)2 ·

[
1 + 2u + 1

2u2
]

(4 · χ · t)2 · [E1(u)− 2E2(u) + E3(u)]
+3 (4 · χ · t)3 ·[

1 + 3u + 3
2u2 + 1

6u3
] (4 · χ · t)3 · [E1(u)− 3E2(u) + 3E3(u)− E4(u)]

...... ...... ......

In the table:

En(u) =

un−1
∞∫
u

e−u
′

u′n
du

′

n=1,2,3,.... e.g.:E1 =
∞∫
u

e−u
′

u′
du

′

Ein(u) =
u∫
0

1−e−u
′

u′
du

′
G(u) = e−u [Ein (−u)− log (u)]

Lj−1(u) = Laguerre Polynomial order (j-1):[
Lj−1(u) = eu · d(j−1)

du(j−1)

(
u−(j−1) · e−u

)]
L∗j (u) =modified Laguerre Polynomial order (j):

[
L∗j (u) = e−u · dj

duj

(
uj · eu

)]
The following quantity is introduced,

which represents the density of water per unit length of well, per unit time, which
could be withdrawn from aquifer or injected into aquifer from the well. Such density
vanishes for all First solutions shown in the Table. Therefore such solutions are not



{2πr[−K( ∂h
∂r )]}

r→0

suited to describe a real well. Instead such density is proportional to(4 · χ · t)j for
each Second solution (negative j, 0, positive j). Therefore Second solutions are suited
for description of a well.


