

Assessing predictability of observed and modelled global climate data

W. von Bloh (1), M. C. Romano (2) and M. Thiel (2)

(1) Potsdam Institute for Climate Impact Research, PF 601203, 14412 Potsdam, Germany
(bloh@pik-potsdam.de), (2) Institut für Physik, Universität Potsdam, 14415 Potsdam, Germany (thiel@agnld.uni-potsdam.de)

We quantify the long-term predictability of mean daily temperature data by means of the Rényi entropy of second order, K_2 . The inverse of K_2 has units of time and can be interpreted as the mean prediction horizon/time of the system. The method of recurrence plots is used to calculate K_2 and applied to the CRU data set (interpolated measured monthly mean temperature in the years 1901-2003 with 0.5° resolution) as well as to results from a coupled ocean-atmosphere global circulation model on a coarser resolution of 3.75° . A low-pass filtering of the model data is necessary in order to compare the results with the observed data. Furthermore, the results obtained by means of K_2 are compared with the linear variance analysis and calculation of the correlation dimension D_2 . The analysis provides a spatial resolved measure of predictability of the global climate.