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Introduction

Computer-based decision-support systems for nuclear emergencies are, in many re-
spects, similar to systems used to monitor natural hazards. For instance, monitoring
networks regularly collect and report local observations of a variable that need to be
converted into information with spatial continuity, in other words, maps that might be
essential for decision-making. Ideally, these maps should be established automatically
in order to allow real-time assessments and to minimize human intervention in case
of emergency. Automating the spatial interpolation step is not as straightforward is it
may sound: many methods exist, and each has its advantages and disadvantages. The
choice of a method depends mainly on:

. the nature of the data,

. the density and spatial distribution of the sampling points,

. the spatial variability of the variable,

. the initial assumptions made on the phenomena being studied,

. the goals of the study (description, quantification, identification of hot spots, etc),
. the desired level of accuracy,

. the computing load,
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. the experience of the user.



Once a choice is made, one will furthermore have to select a number of parameters
from which many are defined arbitrarily. These parameters are usually selected by
time-consuming cross-validations, and each test has to be repeated once new data are
analysed.

SIC2004

In order to explore further the factors that need to be taken into account when design-
ing decision-support systems which involve automatic interpolation at some stage,
an exercise was organised in 2004 by the Radioactivity Environmental Monitoring
Group (Institute for Environment and Sustainability, Joint Research Centre, European
Commission). The Spatial Interpolation Comparison 2004 (SIC2004; see EUR, 2005)
statistical exercise was organised on the internet: participants were invited to design
algorithms for automatic mapping on the basis of daily dose-rate measurements re-
ported by the German national automatic monitoring network (IMIS) of the Federal
Office for Radiation Protection.

Practically speaking, participants were provided with a set dhily measurements

and asked to estimate values assumed by the variable at a numer aflocations.

The real values observed at th@ge- n sampling places were revealed only at the end

of the exercise in order to assess the relative performances of the proposed algorithms.
Another essential consideration for the participants was that the algorithms had to
be able to deal with extreme events that would affect the statistical portrait of the
monitored phenomenon. This may happen when stations malfunction or if disasters
occur and, as a consequence, measured values by far exceed background levels. To
explore the response of interpolation algorithms to such extreme events, a second test
dataset simulating an accidental release of radioactivity into the atmosphere was also
used. A small corner of the monitored area was chosen, and a dispersion process was
modelled in order to obtain a few values on the order of 10 times more than the overall
background levels reported in the first dataset.

The participants chose mainly two types of functions: geostatistical functions and
machine-learning algorithms. Both are statistical techniques and, since a minimum
number of observations are required for drawing any kind of portrait of the studied
phenomenon, the discussions that will follow cannot be generalised to all systems.
This aspect of the problem underlines the need for physical models in early phases of
disasters as only very few observations are available to describe the situation.

The robustness of geostatistical methods (see e.g. Chiles and Delfiner, 1999) accounts
for the increasing use of these functions in environmental sciences. Nevertheless, their
performance depends strongly on the model chosen to describe the spatial correlation
of the variable (the semivariogram) which is used to derive the weights of the estima-



tion function. In addition, semivariogram models are frequently difficult to estimate

accurately in areas with strong, local fluctuations and/or sparse information. In this
regard, semivariogram fitting still remains the weak point of such functions in terms
of automatic processing.

Concerning the self-learning ability of machine-learning algorithms (see e.g. Bishop,
1995), they seem to offer an interesting solution by providing the expert with methods
that appear to be independent of any a priori knowledge of the spatial correlation of
the phenomenon under investigation. However, these methods are still relatively new
and need further testing as well as a sound methodology in order to tune the numerous
parameters that they require. The main parameters to optimise include the number of
hidden layers, interconnecting nodes, tolerance, and so forth.

Results

In the first scenario, that is of routine monitoring, almost all of the 32 algorithms sub-
mitted gave very similar results, and the correlation between estimated and true values
were good in almost all cases (Pearson’s correlation coefficient ranged between 0.70
and 0.80). This is not a surprise as participants had a few months to design their algo-
rithms, and the data used for training were very similar to those used for the exercise.
A few outliers in terms of performance were nevertheless noticeable as the correlation
was clearly below or close to 0.50. These outliers were produced by machine-learning
algorithms. A similar observation could be made in a previous exercise (SIC97, EUR
2003): geostatistical functions confirmed their reputation for robustness, and, inde-
pendently of the model chosen for spatial correlation, they all generated good results,
while machine-learning algorithms gave estimation results that span the range from
the best to the worst cases. This clearly confirms the difficulty in training machine
learning algorithms.

In the emergency case, the extreme values in the dataset surprised most participants,
and much more variability was observed in the results: the correlation coefficient
ranged from 0.02 to 0.86 and most values fell below 0.50. In a number of cases, geo-
statistical techniques failed to generate any results due to the heavy dependence on the
model of spatial correlation that could not be calculated. Contrary to the first case, the
few algorithms which gave excellent results were solely machine learning algorithms.

Conclusions

Drawing any general conclusions from these few case studies would be adventurous.
One will nevertheless note that, as in SIC97, none of the SIC2004 participants used
an existing Geographic Information System (GIS) whose interpolation functions often
appear as black boxes to the user and/or because the proposed functions are too sim-



plistic. However, this situation is improving thanks to the growing awareness of GIS
users.

Geostatistical techniques will probably need to become even more complex than they
are at the moment in order to be able do deal properly with very local, extreme events.
However, they still remain interesting candidate functions as they are often used to
generate so-called risk maps in which the probability of exceeding a given threshold
is calculated. Furthermore, in the case of large-scale events and when the number of
reporting stations becomes large enough to define a dominant spatial structure of the
monitored phenomenon, one would probably obtain excellent results with geostatisti-
cal techniques. Here, self-learning algorithms would seem to have a more promising
future if they did not generate so many false alarms! In other words, any increase in
the values observed would have triggered an alarm and generated alarm maps. What is
certain is that many more case studies need to be considered and tested before any of
these algorithms can be effectively implemented today in a decision-support system.
As more scenarios can be tested, research in comparing systems for various types of
hazards will probably improve the design of algorithms.

Practically, for what concerns the German monitoring network, the very high density
of monitoring stations compensates for the lack of an efficient mapping algorithm.
The system uses triangulations (Triangulated Irregular Networks, TIN) in which the
surface is represented as a set of contiguous, non-overlapping triangles. Maps can
thus be drawn in real-time and, as no extrapolation is possible, the interpolator neither
smoothes out extreme values nor does it trigger false alarms.
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