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1 Introduction

Boundary value potential problems for the Laplace or Poisson equation in continuum
media appear as mathematical formulation of processes in different areas of physics,
e. g. in electrostatics and electrodynamics, heat conduction and fluid flows through
porous media. In this paper the general case of a bounded continuum media consti-
tuted of several arbitrary distributed sub-domains with different conductivities (e.g.
thermal conductivity or hydraulic conductivity) and several physical source or sink
sub-domains which induce flow, transfer or transport processes (e.g. heat sources in
the case of heat transfer, wells or drains in the case of groundwater flow) is considered.
For modeling such processes a meshless Multi-Object Singularity Method (MOSM) is
proposed. The objects are the sub-domains with different conductivities called Non-
Singularity-Objects (NSO) and the source/sink sub-domains are called Singularity-
Objects (SO). The SO can be located arbitrarily regarding the NSO. On the bound-
ary of the NSO transition conditions between the internal and external transport/flow
should be satisfied while on the boundary of the SO only boundary conditions for
the external process are required. The singular integral representation of the solution
of boundary value problems for each object will be used as theoretical base of the
MOSM.

It is well understood how to formulate boundary integral equations for those potential
problems. However, most publications on this subject lack suggestions on how to han-
dle the arising singular integral kernels with respect to generated acceptable results in
the actual implementations. In this paper we present a method (i.e. MOSM) including



software implementation aspects for modeling 3D flow, transfer or transport processes
in heterogeneous continuum media and its reliability in practical issues. The presented
MOSM will be focused especially on the flow problems in porous media.

2 Formulation of the boundary value problem and its
solution by means of singular integral representa-
tions

One considers a bounded continuum domainΩ with the boundaryΓ. The domainΩ
includes several Non-Singularity-Objects (NSO) and Singularity-Objects (SO) as well
as defined sub-domains:

Ω+
iNSO ⊂ Ω, i = 1, 2, ..., nNSO

with the closed boundariesΓiNSO and

Ω+
jSO ⊂ Ω, j = 1, 2, ..., nSO

with the closed boundariesΓjSO.

In terms of groundwater flow in porous media the NSO represent inclusions with
different hydraulic conductivities which can be also impervious or a hole filled with
water. SO represent discharge or recharge objects like wells, drains or ditches located
arbitrarily and shaped like a stretched tube.

The flow domains are the interiors of all NSO (i.e.Ω+
NSO) and their complementary

region toΩ (i.e.Ω+) are defined as follow:

Ω+
NSO =

nNSO⋃
i=1

Ω+
iNSO

and

Ω+ = Ω− Ω+
NSO ∪ (

nSO⋃
j=1

Ω+
jSO) (1)

The searched solution is the potential function

ϕ(x) =
{
ϕ+

iNSO(x), x ∈ Ω+
iNSO, i = 1, 2, ..., nNSO

ϕ+(x), x ∈ Ω+ (2)



with φ(x) satisfying the Laplace equation in each field point x

∇2ϕ(x) = 0, x ∈ Ω+
NSO ∪ Ω+ (3)

and the following boundary and contact conditions on the boundaries

ϕ+

|Γϕ
= ϕ0

on the potential boundaryΓϕ of the domainΩ,

∂ϕ+

∂n |Γq

= qB

on the flux boundaryΓq of the domainΩ;

ϕ+

|ΓjSO

= ϕ0jSO

on the SO-boundaries,
ϕ+

|ΓiNSO

= ϕ+
iNSO |ΓiNSO

and
∂ϕ+

∂n |ΓiNSO

=
∂ϕ+

iNSO

∂n |ΓiNSO

(4)

on the NSO boundaries where
Γ = Γϕ ∪ Γq.

ϕ0, qB andϕ0jSO are given functions.

3 and 4 build a boundary value problem for the searched potential functionφ.

Mesh dependent methods, namely the Finite Differences Method (FDM) and the Fi-
nite Element Method (FEM) are able to obtain approximate descriptions of the domain
geometry and the governing equations. Their major disadvantage is their tendency to
generate extensively huge data sets and equation systems for three-dimensional prob-
lems. Another disadvantage appears when we put these mesh dependent methods into
practice for NSO and SO. It is difficult if not completely impracticable to describe
arbitrary distributed NSO and SO using FEM/FDM because it requires an update or
costly regeneration of the 3D mesh after each modification of the external boundary
or of the interior objects (i.e. the distribution and the shape of NSO and SO).

A more efficient approach to solve such complex potential problems is to find an ade-
quate method which allows the determination of the required internal/external poten-
tial functions. It is possible by means of boundary integral representations using only
boundary elements or distributed singularities to shape NSO and SO respectively.



The well known fundamental solution of the 3D potential problem i.e. the Newtonian
potential generated at a field point x from a unit simple source located at a source
point ξ:

ω =
1

4π(ξ, x)

with r(ξ, x) as the distance betweenξ and x (see [BANERJEE 1994] and [BREBBIA,
TELLES, WROBEL 1984]) is applied. The searched functionsϕ+

iNSO(x) andϕ+(x)
can be represented as surface single layer potentials like in the case of 2D problems
analyzed by [DAVID 1995].

ϕ+
iNSO(x) =

1
4π

∫
ΓiNSO

ψΓ+iNSO

r(ξ, x)
dΓ + ci, x ∈ Ω+

iNSO

and

ϕ+(x) =
1
4π

∫
Γ

ψΓ

r(ξ, x)
dΓ +

1
4π

∑
i

∫
ΓiNSO

ψΓ−iNSO

r(ξ, x)
dΓ +

∑
j

∫
l
(n)
j

ψj

r(ξ, x)
dl(n) + c

(5)
In these integral representationsψ+

+iNSO(ξ), ψ+
−iNSO(ξ), ψ+

Γ (ξ) andψ+
j (ξ) are un-

known density distributions along the different boundaries. In the same representation
l
(n)
j are the spatial supports of the singularities to generate Singularity Objects (SO):

point singularities (n=0), line singularities (n=1) or surface singularities (n=2).

Using the integral representations 5 and taking into account the boundary conditions
4 one obtains a set of integral equation which allows the determination of the density
functionsψ+

+iNSO(ξ), ψ+
−iNSO(ξ), ψ+

Γ (ξ) andψ+
j (ξ), and furthermore the determi-

nation of the searched potential functions 2.

3 Numerical solution method and implementation

Because only very simple geometrical models can be handled analytically, we have
to solve the multiple-boundary value problem by discretisation. So it is necessary to
introduce boundary elements which forms domain boundaries and for the case of SO,
(n-dimensional) sink/source analytical elements. For practical reasons integrations are
calculated numerically for each element, except when self-influencing.

The transition conditions have to be satisfied onΓNSO, onΓSO andΓ, which implies
the solution of singular integral equation (of Fredholm first kind kernels). If the field



point x on whichϕ or ∂ϕ
∂n have to be determined lies on an element surfaces with

x ∈ s, the integration has to be done numerically by special quadrature schemes
(see [BREBBIA, TELLES, WROBEL 1984]) or analytically in the sense of Cauchy
principal values (see [GAKHOV 1990]).

If the point of observationx ∈ Ω+ ∪ Ω+
NSO gets close to a boundaryΓ or ΓNSO

but with x /∈ Γ ∪ ΓNSO, usually regular quadrature schemes are used. This results
in error distributions close to the boundary. If x gets closer to a boundary point,ϕ
rises up to infinity. This effect, of course, is not a physical problem but a problem of
discretisation and numerical integration.

To smoothen the potential distribution in these areas we propose the introduction of
an additional set of contours

Γ+ε ⊃ Γ

for the outer boundary,
Γ+ε

iNSO ⊃ ΓiNSO

and
Γ−ε

iNSO ⊂ ΓiNSO (6)

for NSO,

where the index±ε denotes a distance in direction of the outward normal vector of the
referenced domain. (For the separation of source distributions and boundary contours
see e.g. [BISCHOFF 1977] and [POZRIKIDIS 1992].) The unknown density distribu-
tion ψ is now calculated for the indexed boundaries and the SO sources in a way that
it satisfies the boundary and transition conditions on all unindexed boundaries:

ϕ+
iNSO(x) =

1
4π

∫
Γ+ε

iNSO

ψΓ+ε
iNSO

r(ξ, x)
dΓ + ci, x ∈ Ω+

iNSO (7)

ϕ+(x) =
1
4π

∫
Γ+ε

ψΓ+ε

r(ξ, x)
dΓ +

1
4π

∑
i

∫
Γ−ε

iNSO

ψΓ−ε
iNSO

r(ξ, x)
dΓ +

∑
j

∫
l
(n)
j

ψj

r(ξ, x)
dl(n) + c

(8)
Depending on the magnitude of the distanceε and the distribution of quadrature points
we are able to obtain quite smooth potential distributions throughoutΩ+ andΩ+

NSO,
without requiring special treatment of singular Fredholm kernels (due tor(ξ, x) 6= 0).



4 Conclusion

Having proposed a way of domain composition by the introduction of Singularity-
Objects (SO) and Non-Singularity-Objects (NSO) for the use of a Multi-Object Sin-
gularity Method (MOSM) we are able to solve potential problems of arbitrary geo-
metrical configuration of 3D heterogeneities elegantly. We solve singular integral by
distributing the density contours on additional boundaries, which lies outside or inside
the real boundaries. As an extra advantage, this generates smooth potential distribu-
tion even close to and on the boundaries after discretisation and numerical integration.
This meshless method allows the reduction of the discretization complexity.
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