Geophysical Research Abstracts, Vol. 7, 03095, 2005 SRef-ID: 1607-7962/gra/EGU05-A-03095 © European Geosciences Union 2005

Efficiency of Br⁻ and I⁻ for activating chloride in sea-spray aerosol, derived from aerosol smog chamber experiments and model calculations

W. Behnke (1) and C. Zetzsch (2)

(1)Fraunhofer-Institut für Toxikologie und Experimentelle Medizin, Nikolai-Fuchs-Str. 1, Hannover, Germany, (2) Forschungsstelle Atmosphärische Chemie der Universität Bayreuth, Dr.-Hans-Frisch-Str. 1-3, Bayreuth, Germany

Correspondence should be sent to Wolfgang Behnke, behnke@item.fraunhofer.de

Observations in the Arctic spring but even at mid-latitudes show that atomic Br and atomic Cl are produced in the boundary layer during NO_x-poor periods. The activation of Br is followed by destruction of ozone and production of BrO. The latter one has a dramatic influence on the mercury cycle. Model calculations show that halogen-containing radicals are produced in the presence of sea-spray aerosol and ozone using Br⁻ as a catalysing species. Besides the influence of Br⁻ a possible influence of I⁻ has been discussed (Vogt et al., 1999). Though iodide is a very minor trace compound in seawater (I⁻/Br⁻/Cl⁻ = 1/1500/10⁶), a strong enrichment (up to a factor of 40) was observed in sea-spray, especially in the aged aerosol. The activating character of I⁻ is expected to exceed that of Br⁻ because it is a stronger nucleophile.

Effects of Br⁻ and I⁻ on halogen activation in sea-spray aerosol were investigated by aerosol smog chamber experiments accompanied by model calculations. Surprisingly, the observed ozone destruction is by a factor of about ten lower in the presence of iodide than in the presence of bromide (both in similar concentration). This indicates that much less I atoms are formed than Br atoms. More complicated are the effects promoting the activation of Cl⁻. At low initial ion concentrations of I⁻ or Br⁻ below 1 μ g/m³ (400 μ g/m³ NaCl concentration) the observed production rate of atomic Cl is significantly higher in the presence of I⁻ than of Br⁻. At high initial ion concentrations above 2 μ g/m³ the production rate of atomic Cl is up to three times higher in the presence of Br⁻. The model calculations show that the activation of chloride

in the presence of Br⁻ occurs mainly by the production of HOBr followed by uptake into the aerosol and reaction with Cl⁻. In contrast to this finding HOI is immediately formed by the rapid reaction of dissolved ozone with I⁻: $O_3(aq) + I^- ==> OI^- + O_2(aq)$ (k = 4.2 $\cdot 10^9 \text{ M}^{-1}\text{s}^{-1}$, seven orders of magnitude faster than the analogous reaction with Br⁻). On the other hand, I⁻ is rapidly transformed to the very inactive IO₃⁻ by the self reaction of IO (IO(aq) + IO(aq) ==> IO₂⁻ + HOI + H⁺) followed by further oxidations e.g. by IO₂⁻, H₂O₂ or HOCl.

References:

Vogt, R., R. Sander, R. von Glasow, and P.J. Crutzen, Iodine chemistry and its role in halogen activation and ozone loss in the marine boundary layer: A model study, *J. Atmos. Chem.* **32** (1999) 375-395.