Geophysical Research Abstracts, Vol. 7, 02585, 2005 SRef-ID: 1607-7962/gra/EGU05-A-02585 © European Geosciences Union 2005

A comparison of the shallow ice approximation with the full Stokes equation in glacier dynamics simulations

O. Gagliardini (1), E. Le Meur (1), T. Zwinger (2) and J. Ruokolainen (2) (1) LGGE CNRS UJF-Grenoble I, France, (2) CSC-Scientific Computing Ltd., Finland, (Contact gagliar@lgge.obs.ujf-grenoble.fr/Fax : (33) 4 76 82 42 01)

The Shallow Ice Approximation (SIA) is a widely used approach to model ice-sheet and even glacier flows. This is mainly motivated by simplifications introduced by expanding the governing equations into power series of the aspect ratio ζ of the modelled ice body. The fact that the SIA represents the limit $\zeta \rightarrow 0$ raises questions as to its applicability to ice bodies that either globally or locally violate the assumption of a vanishing aspect ratio, as it is the case for alpine glaciers.

Comparison of results obtained with a SIA Finite Difference model with those of a Finite Element Method (FEM) in which the flow equations are fully considered for a set of two and three-dimensional flow tests indicates a decrease of the accuracy of the SIA linked to increasing bedrock slopes rather than to increasing aspect ratio ζ (resulting from higher accumulation rates). Thus, we conclude that in the case of pronounced slopes a bedrock-related aspect ratio should provide a better criterion for assessing the validity of the SIA approach. This is substantiated by the indication of a misfit of longitudinal shear stress components between three-dimensional SIA and full Stokes system simulation results.