Geophysical Research Abstracts, Vol. 7, 02033, 2005 SRef-ID: 1607-7962/gra/EGU05-A-02033 © European Geosciences Union 2005

Sources of nitrous oxide production among European coniferous and deciduous forest types

P. Ambus (1) and S. Zechmeister-Boltenstern (2)

(1) Biosystems Department, Risø National Laboratory, Denmark. (2) Federal Research- and Training Centre for Forests, Natural Hazards and Landscape, Austria (per.ambus@risoe.dk / fax +4546774160)

Background and objectives

Forests are important sources for emissions of nitrous oxide (N₂O) into the atmosphere. In the soil, N₂O is produced as an intermediate or end product from biological nitrification and denitrification. The strength of each process for producing N₂O is strongly influenced by environmental parameters such as soil chemical and physical properties, climate and vegetation. To predict future N₂O emissions it is therefore necessary to identify and characterize the processes important for N₂O production associated with different land use. Previous work has shown that the N₂O source strength can be related to forest type (Butterbach-Bahl et al. 1997), but little is known about the processes. In this study we examined the relationship between N₂O production, soil inorganic N availability and gross rates of mineralization and nitrification in different European forest sites.

Methods

Gross mineralization (NH₄⁺ supply) and gross nitrification (NO₃⁻ supply) was measured in combination with N₂O emission after addition of ¹⁵N-labelled NH₄⁺ and NO₃⁻ to intact soil columns collected from the top 0-10 cm mineral soil layer. We included a total of 11 sites in the study. The sites comprised 4 deciduous forest sites (Bosco negri-I, Schottenwald-A, Ticino-I, Sorø-DK) and 8 coniferous forest sites (Achenkirch-A; Glencorse-GB; Höglwald-D; Hyytiälä-SF; Nyirjes-HU; San RossoreI; Speulderbos-NL). Each site was visited twice during one growing season, *viz.* once in the spring and once in the autumn. Two sites, Hyytiälä and Sorø, were observed four times through the season.

Results

Emissions of N₂O in samples treated with NO₃⁻ varied considerably (range <1 – 467 μ g N m⁻² h⁻¹) between the different sites. The highest emissions were observed in sites dominated by deciduous trees (Bosco negri, Schottenwald and Sorø). Several of the coniferous sites showed little or no emissions of N₂O (e.g. San Rossore, Speulderbos and Hyytiälä). A similar effect of tree species was also observed in soil cores without N-additions and in soil cores treated with NH₄⁺. The overall ratio of N₂O emissions from deciduous soils vs. coniferous soils averaged 3.6. The N₂O emissions increased ca. 3.5 times upon NO₃⁻-additions and ca. 1.4 times upon NH₄⁺-additions.

In experiments with ¹⁵NO₃⁻-labelling the ¹⁵N enrichments of N₂O closely reflected that of the NO₃⁻-pool. In all but one (Achenkirch) experiments with ¹⁵NH₄⁺-labelling, the N₂O was substantially lower enriched than the NH₄⁺-pool. Among all sites it was calculated that NO₃⁻ accounted for 60% of the N₂O produced independent of vegetation type. About 14% of the evolved N₂O could be linked to the NH₄⁺-pool with a trend showing that NH₄⁺ was a more important source for N₂O production in the deciduous sites than in the coniferous sites.

In agreement with this observation, it was found that N_2O emissions in the deciduous forests were positively correlated to gross nitrification, with an average N_2O :nitrification ratio of 0.025. There was a similar trend for the coniferous soils (ratio 0.005), but the relationship was not significant. Nitrous oxide emissions were weakly, but significantly (P<0.05), related to gross mineralization in the coniferous soils, but no relationship was observed for the deciduous soils.

Discussion and conclusions

The experiment does indicate that N₂O production was dominated by denitrification at almost all sites. An exception to this general pattern was the Achenkirch site that showed significant responses to the NH_4^+ -treatment. Achenkirch also had the highest gross nitrification rate, emphasizing nitrification as an important process for N₂O production here. We observed a significant relationship between gross nitrification and N₂O emissions in the deciduous forests, however, the isotopic footprints did not confirm this relationship. It is therefore likely that the role of nitrification was as precursor of NO₃⁻ for denitrification rather than N₂O production per se. Production of N₂O from N-mineralization has never been documented. The positive relationship between N₂O and gross mineralization in the coniferous sites thus probably expresses a relationship between the potentials for N₂O loss and N-cycle characteristics. That is, ecosystems with "open" N-cycles, characterized by high turnover rates, are more likely to loose N₂O compared with "closed" N-cycle systems, characterized by low turnover rates. In summary, we conclude that i) deciduous soils emitted ca. 4 times more N₂O than coniferous soils, ii) 60% of the N₂O was derived from the NO₃⁻ pool (denitrification) and 14% from the NH_4^+ pool (nitrification), iii) gross nitrification was a significant predictor of N₂O emission in deciduous soils with a N₂O:nitrification ratio of 0.025, and iv) N₂O emissions were positively related to gross mineralization in coniferous soils.

References

Butterbach-Bahl K, Gasche R, Breuer L and Papen H 1997 Fluxes of NO and N_2O from temperate forest soils: impact of forest type, N deposition, and of liming on the NO and N_2O emissions. Nutr Cycl Agroecosys 48: 79-90