Geophysical Research Abstracts, Vol. 7, 01949, 2005 SRef-ID: 1607-7962/gra/EGU05-A-01949 © European Geosciences Union 2005

Detection of lower stratospheric SO₂ pollution induced by injection from the polluted planetary boundary layer followed by intercontinental transport

M. Speidel (1), F. Arnold (1), R. Nau (1), T. Schuck (1), H. Schlager (2), A. Roiger (2), M. Lichtenstein (2), H. Huntrieser (2) and A. Stohl (3)

 Max-Planck-Institute for nuclear physics, atmospheric physics devision, Heidelberg, Germany, (2) Institut für Physik der Atmosphäre, DLR Oberpfaffenhofen, Wessling, Germany,
Norwegian Institute for Air Research (NILU), Kjeller, Norway
(Frank.Arnold@mpi-hd.mpg.de / Fax: +49 6221 516324 / Phone: +49 6221 516324)

We report on the detection of a case of lower stratospheric SO₂ pollution above Central Europe. Simultaneously measured O₃, CO, and water vapour data along with model simulations and meteorological analyses indicate that the observed SO₂ stemmed from the polluted planetary boundary layer of the north-eastern USA where it was injected into the lower stratosphere by a warm conveyor belt with embedded deep convection. After injection the SO₂-rich lower stratospheric air mass traveled within 9 days to Central Europe where it was intercepted by a research aircraft on board of which the SO₂-measurements took place. These measurements were made using a novel aircraft-based CIMS (chemical ionisation mass spectrometry)-instrument equipped with an ion trap mass spectrometer. Importantly the very sensitive and fast-response CIMS-instrument was continuously calibrated employing isotopically labeled SO₂. Our findings have interesting implications for the injection of SO₂ from the planetary boundary layer into the lower stratosphere, for lower stratospheric long-range SO₂-transport, and also for lower stratospheric SO₂-induced aerosol particle formation and growth.