Geophysical Research Abstracts, Vol. 7, 01509, 2005 SRef-ID: 1607-7962/gra/EGU05-A-01509 © European Geosciences Union 2005

Comparison of retrieved NO₃ vertical profiles from **SCIAMACHY with 1-D model outputs**

L. K. Amekudzi, B.-M. Sinnhuber, N. V. Sheode, J. Meyer, A. Rozanov, L. N. Lamsal, H. Bovensmann and J. P. Burrows

Institute of Environment Physics and Remote sensing (IUP), University of Bremen.

NO₃ has been measured over the Antarctic ($60^{\circ}-90^{\circ}$ S) by the space borne instrument SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartography) on board the ENVISAT (ENVIromental SATellite), using lunar occultation measurement technique. From the visible spectral band (610-680 nm) containing NO₃ absorption lines at 623 and 662 nm, vertical profiles of NO₃ have been retrieved. To verify the validity and consistency in the retrieved NO₃ vertical profiles, a comparison of the retrieved NO₃ and calculated NO₃ profiles using a 1-D photochemical model is performed. The NO₃ profiles calculated from the full 1-D photochemical stacked box model show good agreement with retrieved NO₃ profiles between 24 to 50 km within the estimated accuracy of 20–35%. A good agreement (high positive correlation) was observed between retrieved NO₃ and 1-D steady state model outputs from 24 to 40 km.