Geophysical Research Abstracts, Vol. 7, 01188, 2005 SRef-ID: 1607-7962/gra/EGU05-A-01188 © European Geosciences Union 2005

Reactions rates and mechanisms of product formation in the gas phase I_2/O_3 photochemistry

J.C. Gómez Martín, P. Spietz and J.P. Burrows

Institute of Environmental Physics and Remote Sensing, University of Bremen, Germany (jcgomez@iup.physik.uni-bremen.de / Fax: +49 (0)421 218 4555 / Phone: +49 (0)421 218 2286)

To evaluate the relevance of atmospheric iodine chemistry in ozone depleting cycles and in aerosol formation it is necessary to gain a previous understanding of the kinetics and mechanisms involved. The chemistry generated by flash photolysis of I_2 in the presence of O_3 has been studied by using multichannel time-resolved absorption spectroscopy in order to compile such information. This chemical system was previously studied in order to determine absolute absorption cross sections of IO, IO*, OIO and higher iodine oxides. Therefore, time dependent concentration curves of relevant gas phase species are available.

These data have been analysed to derive a mechanism which explains the homogeneous aerosol nucleation observed. The mathematical formulation of the proposed mechanism as a set of differential rate equations enabled to derive by numerical integration and optimisation methods the rate constants of the reactions considered. Results obtained include the following rate constants: $k(I_2+O)$, $k(I+O_3)$, $k(I+O_2)$, k(O+IO), k(I+IO), k(IO+IO), branching ratios of the IO self reaction, k(IO+OIO) and $k(OIO+O_3)$. The results obtained for the IO source reactions and the IO self reaction are in agreement with the IUPAC recommended values.

A main result of these studies is the determination of rate constants of reactions involving OIO, which plays a key role in the iodate enrichment of aerosol and the ozone destroying power of iodine species. In this work the reactions IO+OIO+M \rightarrow I₂O₃+M (k(400mbar)=(1.5\pm0.5)10⁻¹⁰cm³molec⁻¹s⁻¹) and OIO+O₃ \rightarrow IO₃+O₂ (k=(2.0\pm0.5)10⁻¹³cm³molec⁻¹s⁻¹) are proposed as plausible paths to higher iodine oxides and aerosol formation.