Geophysical Research Abstracts, Vol. 7, 00810, 2005 SRef-ID: 1607-7962/gra/EGU05-A-00810 © European Geosciences Union 2005

Cretaceous-Cenozoic tectonic stress fields in the vicinity of diffuse plate boundary between North American and Eurasian plates in the Laptev Sea region (Bel'kov Island, Russian Arctic)

V. Verzhbitsky

P.P.Shirshov Institute of the Oceanology, Russian Academy of Sciences (verba@ocean.ru)

The purpose of the study is to present the reconstructions of the Cretaceous-Cenozoic tectonic stress fields for the Laptev Sea Region. The study is based on the mesostructural investigations, carried out mainly in the Middle-Upper Paleozoic sedimentary rocks along the Western coast of Bel'kov Island in 2002. Bel'kov Island is located in the North-Eastern Laptev Sea region, close to the diffuse plate boundary between Eurasian and North American plates [e.g. Gordon, 1998; Avetisov, 1999] and is the nearest one to southern termination of Gakkel ultraslow spreading ridge. The Island belongs to extended Bel'kov horst of the Late Cretaceous (?) - Cenozoic Laptev Sea rift system [e.g. Drachev et al, 1998]. It is commonly believed, that general NW-SE trending compressional structural pattern of Bel'kov and adjacent (to the East) Kotel'nyi Island was formed in Early Cretaceous (Neocomian) as a result of Eurasia - Chukchi-New Siberian block collision along South Anyui-Lyakhov suture zone. It was determined, that NW-SE striking and steeply deeping to SW reverse faults (corresponding to the general structural pattern) are complicated by small, but wide-spread left-lateral constituent. According to plate tectonic reconstructions [Gaina et al. 2002] the Laptev Sea segment of North American and Eurasian plate boundary was developed in the Late Cretaceous in compressional setting (79-69 Ma), followed by extension and transtension during latest Late Cretaceous - Middle Miocene (69-11 Ma). Mesostructural data confirm the presence of postcollisional stage of ~ E-W compression and subsequent extensional/ sinistral transtensional setting. The analysis of distribution of poles to normal faults without significant strike-slip component revealed the presence of two main populations, corresponding to the NE-SW and ENE-WSW

general extension directions (roughly orthogonal to the Laptev Sea rift system and Gakkel spreading ridge) during rift stage. It is interesting to note, that \tilde{N} -S compressional (most likely immediately after \tilde{E} -W compression) stage is also recognized. The work was supported by INTAS grant 01-0762 (NEMLOR), N.Sh.-1980.2003.5 and RSSF grants.