

SHARP-CRESTED GRAVITY WAVES WITH ANGLES OTHER THAN 120°

I.S. Gandzha¹, V.P. Lukomsky¹, Y.V. Tsekhmister², A.V. Chalyi², L.M. Chernenko² ¹Institute of Physics, National Academy of Sciences, Kyiv, Ukraine; ²Bogomoletz National Medical University, Kyiv, Ukraine; (lukom@iop.kiev.ua/Fax: 38-044-2651589)

In the framework of the canonical model of hydrodynamics, where fluid is assumed to be ideal and incompressible, waves are potential, two-dimensional, and symmetric, the authors have recently provided numerical evidence for the possible existence of sharp-crested gravity waves other than a 120° limiting Stokes wave [1, 2]. To clarify these recent results, the purpose of this presentation is to show that the canonical model admits sharp-crested solutions with crest angles other than 120°. To this end, we generalized the well-known Michell's method (which is usually used to calculate a 120° Stokes corner flow on deep water) to include an arbitrary angle at the crest. The complex velocity of a corner flow with angle $\alpha = \pi(1 - \nu)$ is described as

$$\frac{\mathrm{d}w}{\mathrm{d}\zeta} = -c \, (1-u)^{\nu} \sum_{n=0}^{N} b_n \, u^n, \ u = \exp(\mathrm{i} \, w/c), \ b_0 \equiv 1,$$

where w is the complex potential, $\zeta = x + i y$ (x and y being the horizontal and vertical coordinates with origin at the wave crest), and c is the wave phase speed (waves propagate along the x-axis). Substitution of this expansion into the Bernoulli equation leads to a set of non-linear algebraic equations for the real coefficients b_n ($n = \overline{1, N}$) and the wave phase speed c. When only the first term (n = 0) of the expansion is considered, the Bernoulli equation admits no other possibility than $\nu = \frac{1}{3}$, i.e., $\alpha = 120^{\circ}$ (famous Stokes theorem). In view of this, original Michell's method incorporates the *a priori* assignment $\nu = \frac{1}{3}$. We show that for N > 0 the condition $\nu = \frac{1}{3}$ is not necessary and the Bernoulli equation generally admits solutions with $0 < \nu < \frac{2}{3}$ (180° > $\alpha > 60^{\circ}$). Numerical results demonstrate that the waves with $\alpha > 120^{\circ} / \alpha < 120^{\circ}$ have smaller / higher amplitudes (trough-to-crest heights) as compared to the limiting Stokes wave.

[1] Lukomsky V.P., Gandzha I.S. Fractional Fourier approximations for potential gravity waves on deep water // Nonlinear Processes in Geophysics. – 2003. – Vol. 10, No. 6. – P. 599–614.

[2] Lukomsky V. P., Gandzha I. S., Lukomsky D. V. Reply Comment on "Steep sharp-crested gravity waves on deep water" // Phys. Rev. Lett. – 2004. – Vol. 93, No. 6. – P. 069 403–1.