A mass-conservative semi-implicit semi-Lagrangian limited area shallow water model on the sphere

P.H. Lauritzen (1,2), E. Kaas (2), B. Machenhauer (2)
(1) University of Copenhagen (pel@DMI.dk/+45 39157460),(2) Danish Meteorological Institute (ek@DMI.dk,bm@DMI.dk/+45 39157460)

A locally mass-conservative shallow water model using a two-time-level, semi-implicit semi-Lagrangian integration scheme is presented. The momentum equations are solved with the traditional semi-Lagrangian grid-point form. The explicit continuity equation is solved using a cell-integrated semi-Lagrangian scheme and the semi-implicit part is designed such that the resulting elliptic equation is on the same form as for the traditional semi-Lagrangian grid-point system.

The accuracy of the model is assessed by running standard test cases adapted to a limited area domain. The accuracy and efficiency of the new model is comparable to traditional semi-Lagrangian methods and is not susceptible to noise problems for high Courant number flow over orography.