Mobile Geochemistry Instrument Package Facility (MGIPF) for In Situ Mineralogical and Chemical Analysis of Planetary Surface Material

G. Klingelhöfer (1), J. Romstedt (2), H. Henkel (3), H. Michaelis (4), J. Brückner (5), C. d'Uston (6)

 Johannes Gutenberg-Universität, Mainz, Germany, (2) ESA ESTEC, Noordwijk, Netherlands, (3) von Hoerner & Sulger, Schwetzingen, Germany, (4) DLR Berlin, Germany, (5) Max-Planck-Institut Chemie, Mainz, Germany, (6) CESR, Toulouse, France.

(klingel@mail.uni-mainz.de / Phone: +49-6131-3923282)

A first order requirement for any spacecraft mission to land on a solid planetary or moon surface is instrumentation for in-situ mineralogical and chemical analysis [2]. Such analysis provide data needed for primary classification and characterization of surface materials present. We will discuss a mobile instrument package we have developed for in-situ investigations under harsh environmental conditions like on Mercury or Mars.

This Geochemistry Instrument Package Facility is a compact box (also called payload cab) containing three small, advanced geochemistry / mineralogy instruments: the chemical spectrometer APXS, the mineralogical Mössbauer spectrometer MIMOS II [3], and a textural imager (close-up camera). The payload cab is equipped with two actuating arms with two degrees of freedom permitting precision placement of all instruments at a chosen sample. This payload cab is the central part of the small rover *Nanokhod* which has the size of a shoebox [1]. The *Nanokhod* rover is a tethered system with a typical operational range of ~ 100 m.

Of course the payload cab itself can be attached by means of its arms to any deployment device of any other rover or deployment device.

[1] Andre Schiele, Jens Romstedt, Chris Lee, Sabine Klinkner, Rudi Rieder, Ralf Gellert, Göstar Klingelhöfer, Bodo Bernhardt, Harald Michaelis, *The new NANOKHOD: Engineeering model for extreme cold environments*, 8th International symposium on Artificial Intelligence, Robotics and Automation in Space, 5 - 9 September 2005, München, Germany

[2] R.V. Morris, G. Klingelhöfer, R.L. Korotev, T.D. Shelfer, *Mössbauer Mineralogy* on the Moon, in: Hyperfine Interactions 117 (1998) 405.

[3] Klingelhöfer et al., J. Geophys. Res. 108 (2003), doi 10.1029/2003JE002138.