On accuracy of the 15 μ m CO₂ band cooling rate values reproduced by matrix parameterization in the MLT taking account for the temperature variations caused by planetary waves

V. Ogibalov

Department of Atmospheric Physics, Institute of Physics, St. Petersburg State University, Russia (vpo@lmupa.phys.spbu.ru / Phone: +7 812-4284489)

Calculation of the radiative cooling rate of the mesosphere and lower thermosphere (MLT) in the 15 μ m CO₂ band is a time consuming task due to breakdown of the local thermodynamic equilibrium (non-LTE) in this altitude region. So, the more simple calculation schemes (so-called parameterizations) still remain a useful tool to take account of the radiative cooling in general circulation models (GCM) of the upper atmosphere. Such effective matrix parameterization [1] can reproduce the 15 μ m CO₂ band cooling rate with a good accuracy $(1 \div 3 \text{ K/day})$ for a wide range of temperature (T) vertical profiles in the MLT. Nevertheless, the parameterization has been developed basing on the cooling rate values calculated for only the smoothed climatological T-profiles. Global planetary waves of different types permanently spread throughout the atmosphere. In particular, the solar diurnal and semidiurnal tides result in wavelike perturbations in T-profiles in the MLT, which have the most significant amplitudes (up to 25K near about 120 km). The 15 μ m CO₂ band radiative cooling is caused by a transfer of thermal energy of air molecules during collisions into the energy of excited CO₂ molecular states followed by radiative de-excitation of these states. That results in the tidal temperature variations influence nonlinearly on the radiative cooling rate. So, there is a necessity to test the accuracy of the parameterization [1] for the realistic *T*-profiles.

In the present investigation, the temperature distributions with and without solar tides were modeled using the COMMA-LIM GCM (COlogne Model of the Middle Atmosphere – Leipzig Institute for Meteorology) within the $0\div135$ km altitude region. An ability of the parameterization [1] to reproduce the values of the 15 μ m CO₂ band cooling rate for *T*-profiles perturbed by planetary waves of different types with practically the same accuracy as for the climatological *T*-profiles was found out.

The investigation has been supported by the Russian Foundation for Basic Research through the grant 03-05-64700a.

[1] Fomichev, V.I., et al. // J. Geophys. Res., 103, No. D3, P.11505-11528, 1998.