Novel deep-space radar systems and topside HF wave measurements as new sources of data for Space Weather services

H. Rothkaehl(1), B. Thidé(2), W. Baan(3), J. Bergman(2), C. Hanuise(4), X. Moussas(5), J. Watermann(6)

(1) Space Research Center, PAS Bartycka 18 A 01-716 Warsaw, Poland,(2) Swedish Institute of Space Physics, P.O. Box 537, SE-752 21 Uppsala, Sweden,(3)ASTRON, Netherlands Foundation for Research in Astronomy, and Westerbork Observatory, Postbus 2, 7990AA Dwingeloo, The Netherlands,(4) LPCE/CNRS 3A, avenue de la Recherche Scientifique 45071 Orléans cedex 02 France, (5) National and Kapodistrian University of Athens GR 15783 Athens, Greece, (6) Danish Meteorological Institute DK-2100 Copenhagen, Denmark

To understand the properties of the solar terrestrial environment and to develop a quantitative model of the magnetosphere-ionosphere-thermosphere subsystem, which is strongly coupled via the electric field, particle precipitation, heat flows and small scale interaction, it is necessary to design and build new generation multi-point and multitype sensor diagnostics, as the LOFAR-LOIS system. Ground-based multi-frequency and multi-polarisation netted radio and radar facilities and observation clusters in space will be helpful to find solutions to problems in space physics and to detect long-term environmental changes. The innovative radio spectrometer on board the COMPASS satellite was designed to investigate the still largely unknown mechanisms which govern these turbulent interactions of natural and man-made origin. Future simultaneous investigation and monitoring of the Earth environment by the combined LOIS-LOFAR system will be coordinated with space-borne low orbiting experiments. Real-time access to such high-resolution, multi-region data is likely to improve the quality of different types of space related services.