Flare energy conversion from direct electric fields due to the sheared magnetic reconnection

T. Hirayama

National Astronomical Observatory of Japan

We propose a new mechanism of the main energy conversion of the solar flare. Because the rising velocity of a flare inducing prominence, or a magnetic flux tube at an early phase of CME is ≤ 300 km s⁻¹, a continued plasma ejection with Alfvén velocities of 3000km s⁻¹ below it may be hindered (obstacle), but perhaps with V_z \approx 100km s⁻¹. This requires discarding the slow shock mechanism.

Adopting reconnection morphology, we assume a magnetic component parallel to the photospheric neutral line, i.e. sheared fields B_y besides vertical antiparallel B_z components. Then Gauss law leads to non-zero electric charges $\sigma: 4\pi\sigma = \operatorname{div} E_{total} \equiv \operatorname{div}(E_{\parallel}+E_{\perp}) = -\operatorname{div}(\mathbf{V}\times\mathbf{B})/\mathbf{c} \approx B_y \partial V_z/c\partial x$ ($B_y \approx B_z = 40$ G and $\delta x \approx 10^3$ km, and $\operatorname{div} E_{\parallel} = 0$ is ascertained by numerical integration). Field-aligned electric fields E_{\parallel} far excess of the Dreicer field are expected from Coulomb law with σ , and accelerate electrons and protons. Due to large electric fields, the horizontal Poynting energy flux in area S_x is immediately converted to a kinetic energy of e.g. electron beams along the magnetic field in S_z ; $V_x B^2 S_x/4\pi = (1/2)m_e n_{beam} V_{beam}^3 S_z$ and e.g. $S_x/S_z \approx 3$. The total flare energy can be supplied by 10keV electrons of $(1/2)m_e V_{beam}^2$ and $n_{beam} = 2 \times 10^7 \text{ cm}^{-3}$ for $V_x = 40 \text{ km s}^{-1}$, ensuring the flare short duration. There will be no charge accumulation, nor extra electric currents due to back-streaming majority electrons ($\approx 10^3 \text{ km s}^{-1}$) which are co-spatial with electron beams($\approx 10^5 \text{ km s}^{-1}$) because of $4\pi \operatorname{divj/c} = \operatorname{div}(\operatorname{rot} B) = 0$.