Ultra-heavy elements in solar energetic particles above 10 MeV/nucleon

R.A. Leske (1), C.M.S. Cohen (1), A.C. Cummings (1), R.A. Mewaldt (1), E.C. Stone (1), M.E. Wiedenbeck (2), and T.T. von Rosenvinge (3)

(1) California Institute of Technology, Mail Code 220-47, Pasadena, CA 91125 USA (ral@srl.caltech.edu, fax 626-449-8676), (2) Jet Propulsion Laboratory, MS 169-327, Pasadena, CA 91109 USA, (3) NASA/Goddard Space Flight Center, Code 661, Greenbelt, MD 20771 USA

Measurements below several MeV/nucleon show that abundances of elements heavier than Ni (Z=28) can be enhanced relative to oxygen by factors of ~100 to 1000 (depending on species) in impulsive solar energetic particle (SEP) events. At higher energies, even large gradual events are often iron-rich and may contain admixtures of flare seed material. The Solar Isotope Spectrometer (SIS) on NASA's ACE spacecraft measures the composition of energetic nuclei for elements up to ~Zr (Z=40) at energies from ~10 to >100 MeV/nucleon, and has recorded ~1000 nuclei heavier than Ni, including measurable quantities of Zn, Ge and Se (Z=30, 32, and 34). We present SIS observations of ultra-heavy SEPs that can be used to test models of acceleration and abundance enhancements in both gradual and impulsive events. We find that the long-term average composition for elements from Z=30 to 40 is similar to standard solar system values, but there is considerable event-to-event variability. For example, at energies >10 MeV/nucleon, the event of 23 July 2004 had a (34<Z<40)/O enhancement of ~250-300 times the standard solar value.

This work was supported by NASA at Caltech (under grant NAG5-12929), JPL, and GSFC.