Forbush Decreases and Cloud Cover

J. Calogovic (1, 2), J. Beer (1), L. Desorgher (2), and E. Flueckiger (2)

(1) EAWAG, PO Box 611, CH-8600 Duebendorf, Switzerland
(2) Physikalisches Institut, University of Bern, CH-3012 Bern, Switzerland
(jasa.calogovic@phim.unibe.ch / Phone: +41-31-631-4058)
According to the cosmic ray - cloud hypothesis, changes in the cosmic ray intensity over the past two and a half solar cycles caused significant changes in the Earth's cloud cover with important consequences for the climate. To test this hypothesis we investigated on a global scale the atmospheric cloud cover and the variation of the atmospheric ionization induced by galactic cosmic rays during the seven largest Forbush decreases from 1989 to 2003. A Forbush decrease is a solar induced sudden decrease in the cosmic ray intensity that occurs within about a day, followed by subsequent recovery within 4-7 days. The reduction in the cosmic ray intensity for the selected events is of the order of $10-20 \%$ and therefore comparable with the changes during an 11-year solar cycle. For each event neutron monitor data were used to determine the changes in the primary differential energy spectrum of the galactic cosmic rays for a period of 20 days starting about 5 days prior to the onset of the Forbush decrease. Using this spectral information the Monte Carlo PLANETOCOSMICS code based on Geant 4 was applied to calculate the ion production rate in the atmosphere during each event period as a function of latitude, longitude, and altitude, taking into account the geomagnetic field prevailing at that time. In this way the changes in the atmospheric ionization rate were obtained for a global grid with a resolution of 5×5 degrees and a temporal resolution of 3 hours. After calculating daily averages these data were compared with the corresponding cloud data (ISCCP D1) allowing for lags ranging from 0 to 10 days. The results of these comparisons for different cloud heights, latitudes, and areas (ocean-land) will be presented and discussed.

