Planetary waves in the equatorial mesosphere and ionosphere

H. Takahashi(1), C. M. Wrasse(1), D. Pancheva(2), M. A. Abdu(1), I. S. Batista(1), L. M. Lima(3), P. P. Batista(1), B. R. Clemesha(1), K. Shiokawa(4)

(1) Instituto Nacional de Pesquisas Espaciais, INPE, CP-515, 12201-970 Sao Jose dos Campos, SP, Brazil, (2) Department of Electronic & Electrical Engineering, University of Bath, Bath, BA2 7AY, UK,(3) Dep. Fisica, Universidade Estadual de Paraíba, Campina Grande, PB, Brazil, (4) Solar Terrestrial Environmental Laboratory, STEL, Nagoya University, Toyokawa, Aichi 442-8507, Japan. (contact: hisaotak@laser.inpe.br)

Meteor radar wind observations from two sites in the equatorial region, one at Cariri $(7.4^{\circ}S, 36.5^{\circ}W)$ and the other at Ascension Island $(7.9^{\circ}S, 14.4^{\circ}W)$, with a distance of 2400 km in longitude, revealed that there are common period oscillations with 3-4-day, 6-8-day and ~16-days in the zonal winds and 2-day period in the meridional wind, suggesting that these are longitudinally propagating planetary waves. The day to day variability of the minimum ionospheric virtual height, h'F, measured at Fortaleza ($3.9^{\circ}S$, $38.4^{\circ}W$) also showed similar oscillation period. Among these the 6-day wave was prominent during a period from August to November 2004. From the phase difference between the two meteor radar sites it is found that the wave has a horizontal wavelength of about 12,000 km, phase velocity of ~21 m/s propagating eastwards, with a vertical wavelength of 60-80 km. Although the wave should not penetrate directly to F-region heights it could affect the post-sunset ExB uplifting of the base of the F-layer. Possible coupling processes between the upper mesosphere to ionosphere will be presented and discussed.