The improvement of GPS-derived PWV accuracies using solid earth tide models based on local measurements

A.Z.A. Combrink (1,2), W.L. Combrinck (1), C.L. Merry (2)
(1) HartRAO Space Geodesy Programme, South Africa, (2) University of Cape Town, South Africa (attie@hartrao.ac.za)

We investigate the influence of contemporary solid earth tide models, in particular the IERS2003 model, on the integrated precipitable water vapour (PWV) obtained from the South African permanent networks of dual-frequency Global Positioning System (GPS) receivers. One of the International GNSS Service (IGS) stations analysed, SUTH (located at the South African Astronomical Observatory, Sutherland), is collocated with a superconducting gravimeter from which vertical earth tide displacement data are obtained for comparisons with the IERS2003 model and GPS measurements. It is illustrated that the global earth tide model over-estimates the crust’s local vertical displacement. It is further shown that the model errors will contribute to significant errors in the consequently derived PWV. Finally, a number of strategies, including a novel method for measuring earth-tide with GPS, are presented to improve solid earth tide modelling during GPS processing.