Enter Zoom Meeting

OS1.3

EDI
The ocean surface mixed layer: multi-scale dynamics and ecosystems in a changing climate

The ocean surface mixed layer mediates the transfer of heat, freshwater, momentum and trace gases between atmosphere, sea ice and ocean, thus playing a central role in the dynamics of our climate. This session will focus on the surface mixed layer globally, from the coastal ocean to the deep ocean. We will review recent progress in understanding the key dynamical and biogeochemical processes taking place in the mixed layer: surface waves, Langmuir circulations and turbulence, shear-induced mixing, internal waves, coherent structures, fronts, frontal instabilities, entrainment and detrainment at the mixed layer base, convection, restratification, dynamics of the euphotic layer, carbon and nutrient cycling, etc. The improvement of the representation of surface mixed layer processes in numerical models is a complex and pressing issue: this session will bring together new advances in the representation of mixed layer processes in high resolution numerical models, as well as evaluation of mixed layer properties in climate models using most recent observational datasets. The coupling of the ocean and atmospheric boundary layers as well as the special processes occurring under sea ice and in the marginal sea ice zone will be given special consideration. This session welcomes all contributions related to the study of the oceanic mixed layer independent of the time- and space scales considered. This includes small scale process studies, short-term forecasting of the mixed layer characteristics for operational needs, studies on the variability of the mixed layer from sub-seasonal to multi annual time scales and mixed layer response to external forcing. The use of multiple approaches (coupled numerical modeling, reanalyses, observations) is encouraged.

Co-organized by AS2/BG4
Convener: Anne Marie Tréguier | Co-conveners: Baylor Fox-Kemper, Francois MassonnetECSECS, Raquel Somavilla Cabrillo
Presentations
| Thu, 26 May, 17:00–18:30 (CEST)
 
Room 1.15/16

Thu, 26 May, 17:00–18:30

Chairpersons: Anne Marie Tréguier, Francois Massonnet

17:00–17:05
|
EGU22-5808
|
ECS
|
Virtual presentation
Anthony Bosse and Ilker Fer

Mesoscale eddies play an increasingly recognized role on modulating turbulence levels and associated diapycnal fluxes in the ocean, in particular with increased dissipation rates found in anticyclones. In September 2017, the last cruise of the ProVoLo project in the Nordic Seas (https://www.uib.no/en/rg/fysos/97330/provolo) intensively surveyed an energetic mesoscale anticyclone (the permanent Lofoten Basin Eddy) to characterize turbulence of the upper layer and eventually quantify the resulting vertical fluxes nutrients caused by turbulence.

The sampling strategy combined ship-borne measurements and autonomous platforms. The vessel carried out a radial transect with stations spaced by 5 km near the center and 10-20 km outside the eddy with measurements of temperature and salinity (CTD), currents (lowered ADCP) and turbulence (Vertical Microstructure Profiler, VMP2000). Water samples were analyzed to estimate the concentration of the main nutrients (nitrate, phosphate and silicate). In addition, two autonomous oceanic gliders were used. A first glider profiling 0-1000 m deep was completing a 6-month mission. A second glider was specifically deployed during the cruise (5 days). This glider was equipped with a dissolved oxygen Aanderaa optode, a WET Labs FLNTU fluorescence and turbidity sensor and a Rockland Scientific Microrider sampling turbulence. It sampled the surface layer (0-300 m) at high temporal (~30 min) and spatial (~500 m) resolution from about 60 km to 5 km of the eddy center.

By combining those measurements, we characterized the turbulence dissipation rates, vertical diffusion and its associated fluxes across the different nutriclines from the center to the outside region area of the eddy, revealing significant contrasts. Below the thermocline, turbulent patches were observed within the core with dissipation rates elevated by one order of magnitude relative to the values outside. The higher levels of dissipation rates supported 10-fold stronger vertical diffusion coefficients, substantially increasing vertical turbulent fluxes through the nutriclines. The transition between the eddy tangential velocity maximum and the zero vorticity was characterized by a frontal region exhibiting important oscillations of the thermocline, manifesting important vertical exchanges.

This study is not only relevant in a local context, but also has global implications for the ocean energy budget and highlights the need for more high-resolution observations resolving scales from the mesoscale to the dissipation.

How to cite: Bosse, A. and Fer, I.: Contrasts in turbulent vertical fluxes of nutrients across the permanent Lofoten Basin Eddy in the Nordic Seas, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5808, https://doi.org/10.5194/egusphere-egu22-5808, 2022.

17:05–17:10
|
EGU22-2231
|
ECS
|
Virtual presentation
Sofia Allende et al.

In this study, we assess the ability of the ocean-sea ice general circulation models that participated in the CMIP6 Ocean Model Intercomparison Project (OMIP) to simulate the seasonal cycle of the ocean mixed layer depth in the area of the Arctic Ocean covered by multiyear sea ice. During summertime, all models understimate the mixed layer depth by about 20 m compared to the MIMOC (Monthly Isopycnal/Mixed layer Ocean Climatology) observational data. The origin of this systematic bias is unclear. In fall and winter, differences of several tens of meters are noticed between the models themselves and between the models and the observational data. Some models generate too deep mixed layers, while others produce too shallow mixed layers. Since the mixed layer deepening in ice-covered regions during these seasons is largely controlled by the brine rejection associated with ice growth, the discrepancies between models might be related to differences in the modelled sea ice mass balance. However, a detailed model comparison reveals that this is not the case, all models simulating more or less the same sea ice mass balance and thus salt flux into the ocean during sea ice freezing. By applying to model outputs the analytical model developed by Martinson (1990), that allows in particular to determine the main processes responsable for maintaining stablility in polar oceans, it is finally found that most of the disagreement between models can be explained by the accuracy with which the Arctic halocline is reproduced by those models. This feature is simulated generally poorly and quite differently from one model to another, and models with less stratified halocline generally lead to deeper mixed layers. It now remains to identify the model deficiencies responsible for this situation.

How to cite: Allende, S., Fichefet, T., and Goosse, H.: On the ability of CMIP6 OMIP models to simulate the seasonalcycle of the ocean mixed layer depth in the central Arctic Ocean, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2231, https://doi.org/10.5194/egusphere-egu22-2231, 2022.

17:10–17:15
|
EGU22-11925
|
Highlight
|
On-site presentation
Angel Ruiz-Angulo et al.

The ocean around Iceland witnesses some of the most important transformations of water masses that drive the Global Ocean Circulation. Here, we analyze 28 years of continuous four-yearly hydrographic sections around Iceland from 1990 to 2018. The water-mass properties around Iceland show important spatial variability. From their temperature, salinity and stratification structure, we classified the Icelandic waters in three distinct regions with similar characteristics: the Southwest, the North and Northeast regions. The warm and salty Atlantic Waters that dominate the Southwest show the deepest winter mixed layer (~500m) while the North and Northeast have relatively shallow (< 100m) to moderate (~100m) winter mixed layer depth.  
Based on the decomposition of the total stratification into temperature and salt contributions, we find that the subsurface summer stratification is mainly dominated by temperature except for the North and Northwest regions where salinity dominates. 

The interannual variability of the mixed layer and its water properties is also large around Iceland. Mixed layer waters were generally colder in the 90's, then warmed until approximately 2015, and became colder again from 2015 to 2018.  Except for the southwestern region, the observed interannual variability seems unrelated with the North Atlantic Oscillation, and its main forcing remains an open question to address in future studies. Only in the northeastern region a multidecadal mixed layer warming trend clearly emerges from the interannual variability. This is associated with the Atlantification of the Arctic, which is also observed from the northward displacements of the isotherms derived from satellite SST. Elsewhere, rather than clear trends, we observe changes in the structure of the mixed layer temperature and salinity that compensate in density.  The present study provides an unprecedented and detailed regional description of the seasonal to decadal variability of the mixed layer depth and the stratification, and their link with the changing North Atlantic under global warming.

How to cite: Ruiz-Angulo, A., Portela, E., Perez-Hernandez, M. D., Ólafsdóttir, S. R., Macrander, A., Meunier, T., and Jonsson, S.: Impact of Ocean Warming and Natural Variability on the Stratification and Mixed Layer Depth around Iceland, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11925, https://doi.org/10.5194/egusphere-egu22-11925, 2022.

17:15–17:20
|
EGU22-917
|
ECS
|
On-site presentation
Marcel du Plessis et al.

Water mass transformation in the Southern Ocean is vital for closing the large-scale overturning circulation, altering the thermohaline characteristics of upwelled Circumpolar Deep Water before returning to the ocean interior. Using profiling gliders, this study investigates how buoyancy forcing and wind-driven processes lead to intraseasonal (1-10 days) variability of the mixed layer temperature and salinity in three distinct locations associated with different Southern Ocean regions important for water mass transformation - the Subantarctic Zone (SAZ, 43°S), Polar Frontal Zone (PFZ, 54°S) and Marginal Ice Zone (MIZ, 60°S). Surface heat fluxes drive the summertime mixed layer buoyancy gain in all regions, particularly evident in the SAZ and MIZ, where shallow mixed layers and strong stratification further enhance mixed layer warming. In the SAZ and MIZ, the entrainment of denser water from below is the primary mechanism for reducing buoyancy gain. In the PFZ, turbulent mixing by mid-latitude storms result in consistently deep mixed layers and suppressed mixed layer thermohaline variability. Intraseasonal mixed layer salinity variability in the polar regions (PFZ and MIZ) is dominated by the lateral stirring of meltwater from seasonal sea ice melt. This is evident from early summer in the MIZ, while in the PFZ, meltwater fronts are proposed to be dominant during late summer, indicating the potential for seasonal sea ice freshwater to impact a region where the upwelling limb of overturning circulation reaches the surface. This study reveals a regional dependence of mixed layer thermohaline properties to small spatio-temporal processes, which suggests a similar regional dependence to surface water mass transformation in the Southern Ocean.

How to cite: du Plessis, M., Swart, S., Biddle, L. C., Giddy, I. S., Monteiro, P. M. S., Reason, C., Thompson, A. F., and Nicholson, S. A.: The daily-resolved Southern Ocean mixed layer: regional contrasts assessed using glider observations, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-917, https://doi.org/10.5194/egusphere-egu22-917, 2022.

17:20–17:25
|
EGU22-12610
|
Virtual presentation
Bronwyn Cahill et al.

Heating rates induced by optically significant water constituents (OACs), e.g. phytoplankton and coloured dissolved organic matter (CDOM), contribute to the seasonal modulation of thermal energy fluxes across the ocean-atmosphere interface in coastal and regional shelf seas. This is investigated in the Western Baltic Sea, a region characterised by considerable inputs of nutrients, CDOM and freshwater, and complex bio-optical and hydrodynamic processes. Using a coupled bio-optical-ocean model (ROMS-BioOptic), the underwater light field is spectrally-resolved in a dynamic ocean and the inherent optical properties of different water constituents are modelled under varying environmental conditions. We estimate the relative contribution of these water constituents to the divergence of the heat flux and heating rates and find that phytoplankton dominates absorption in spring, while CDOM dominates absorption in summer and autumn. In the Pomeranian Bight, water constituent-induced heating rates in surface waters are estimated to be up to 0.1oC d-1 in spring and summer, predominantly as a result of increased absorption by phytoplankton and CDOM, respectively during these periods. Warmer surface waters are balanced by cooler subsurface waters. Surface heat fluxes (latent, sensible and net longwave) all increase in response to warmer sea surface temperatures. We find good agreement between our modelled water constituent absorption, and in situ and satellite observations. More rigorous co-located heating rate calculations using an atmosphere-ocean radiative transfer model provide further evidence of the suitability of ROMS-BioOptic model for this purpose. The study shows that seasonal and spatial changes in optically significant water constituents in the Western Baltic Sea have a small but noticeable impact on radiative heating in surface waters and consequences for the exchange of energy fluxes across the air-sea interface and the distribution of heat within the water column. The importance of the light attenuation coefficient, Kd, in shelf seas as a bio-optical driver which provides a pathway to estimating heating rates and connects biological activity with energy fluxes is highlighted.

How to cite: Cahill, B., Graewe, U., Kritten, L., Wilkin, J., and Kowalczuk, P.: Seasonal impact of optically significant water constituents on radiative heat transfer in the Western Baltic Sea, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12610, https://doi.org/10.5194/egusphere-egu22-12610, 2022.

17:25–17:30
|
EGU22-1109
|
Highlight
|
On-site presentation
Fabien Roquet et al.

The equation of state of seawater determines how density varies with temperature and salinity. Although it has long been known that the equation of state is nonlinear, there seems to be an overall feeling in the physical oceanography community that associated effects might be secondary in importance. This can be seen for example from the fact that most current theories of the large-scale circulation pre-assume a linear equation of state. Yet we contend here that these nonlinearities are responsible for the main transition in mixed layer properties observed in the World Ocean, the one separating so-called alpha regions (stratified by temperature) and beta regions (stratified by salinity). Beta regions are characterized by a halocline shielding surface cold waters from the influence of warmer deep waters, a condition for sea ice to form in polar region. Through numerical experiments where different equations of state are tested, we show that nonlinear effects of the equation of state: 1) strongly modulate surface buoyancy forcings, especially in mid- to high-latitudes, 2) generate the polar halocline by reducing there the influence of temperature on density, and consequently 3) enables sea ice formation in polar regions. The main nonlinear effect comes from the fact that the thermal expansion coefficient reduces to nearly zero at the freezing point, decreasing drastically the influence of surface cooling on the polar stratification. Other nonlinear effects, such as cabbeling or thermobaricity, are found of lesser importance although they have historically been the focus of intense research.

How to cite: Roquet, F., Ferreira, D., Caneill, R., and Madec, G.: How nonlinearities of the equation of state of seawater generate the polar halocline and promote sea ice formation, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1109, https://doi.org/10.5194/egusphere-egu22-1109, 2022.

17:30–17:35
|
EGU22-11443
|
ECS
|
Virtual presentation
Guillaume Sérazin et al.

Climatologies of the mixed layer depth have been provided using several definitions based on temperature/density thresholds or hybrid approaches. The upper ocean pycnocline (UOP) that sits below the mixed layer base, sometimes referred to as the transition layer or as the seasonal pycnocline, remains poorly characterised though it is an ubiquitous feature of the ocean surface layer. The UOP often consists in a rapid change in density with depth and enhanced vertical shear that connects the well-mixed surface layer to the stratified ocean interior. The UOP is important for the ventilation of the ocean as it represents a barrier to mixing between the upper ocean and the ocean interior.

Available hydrographic profiles (e.g., Argo, CTD on marine mammals) provide near-global coverage of the world's oceans and allow the characterisation of spatial and seasonal variations of the upper ocean vertical stratification, including the UOP. Based on these profiles, we estimate the depth, thickness and intensity of the UOP, and assess when and where the UOP can be considered as a layer with constant thickness. We provide monthly maps of the UOP complementing the available MLD climatologies and we compare the UOP characteristics with the depth and stratification of the mixed layer. We  aim at assessing the UOP intensity in winter and spring when the stratification is usually weak and submesoscale vertical motions can penetrate below the mixed layer base. During these seasons, the UOP intermittency must be taken into account because restratification may occur with intermittent events.

How to cite: Sérazin, G., Tréguier, A.-M., and de Boyer Montégut, C.: A seasonal climatology of the upper ocean pycnocline, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11443, https://doi.org/10.5194/egusphere-egu22-11443, 2022.

17:35–17:45
Discussion I

17:45–17:50
|
EGU22-3968
|
ECS
|
|
On-site presentation
Lily Greig and David Ferreira

The submesoscale has been defined dynamically as those processes with Rossby and Richardson numbers approaching O(1). This scale is of emerging interest within oceanography due to the role it plays in surface layer nutrient and tracer transport. Submesoscale baroclinic eddies or mixed layer eddies (MLEs), if energised in the marginal ice zone (MIZ), have the potential to impact both the rate of ice melt/formation and the magnitude of air-sea heat fluxes in the vicinity of the ice edge. 

In this study, an MITgcm idealised high resolution simulation is used to quantify the impact of MLEs in the vicinity of the ice edge, focusing on the thermodynamic component. The domain (75 km by 75 km at 250 m resolution) is a zonally re-entrant channel with ice-free/ice-covered conditions in the South/North, representing a lead or the MIZ. To measure the eddy impact on both sea ice and air-sea heat fluxes, comparisons are made between a 3D simulation with eddies and a 2D simulation with no eddies (no zonal extension, but otherwise identical to the 3D version). Typical conditions (stratification, forcing) of the Arctic/Antarctic and summer/winter seasons are considered. 

When eddies are permitted to energize and develop within these simulations, their impacts are numerous and coupled: under summer Artic conditions, meridional heat transport to the ice-covered region is tripled with eddies present, which leads to a first order impact on the sea ice melt and a doubling of the average heat storage in the ice-covered ocean. Novel analysis into the direct impact of these eddies on air-sea heat fluxes also shows that - due the partial absorption of downwelling solar radiation by sea ice cover - the solar heat flux into the ice-covered mixed layer increases by 20% when eddies are present. Computing the residual overturning stream function, responsible for driving warmer waters under the ice, reveals the ocean dynamics behind these impacts. The overturning, weakly present in the 2D model due to frontogenesis, increases threefold in the 3D case with submesoscale eddies. Tests with the Fox-Kemper parameterization within the 2D set-up are also helping evaluate to which extent this parameterization can capture the influence of MLE eddies in these polar conditions. 

How to cite: Greig, L. and Ferreira, D.: Submesoscale eddies and sea ice interaction , EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3968, https://doi.org/10.5194/egusphere-egu22-3968, 2022.

17:50–17:55
|
EGU22-12181
|
Virtual presentation
Tim Fischer et al.

We reconstruct the 3-D meso- and submesoscale structure of selected oceanic eddies from ship-based field observations of current velocity, in the mixed layer and below, in order to explore two main questions: what information on upwelling/downwelling can be derived; and inside what eddy radius is water trapped and transported.

The selected eddies have been intensively surveyed during the collaborative project REEBUS (Role of Eddies in the Carbon Pump of Eastern Boundary Upwelling Systems) in the eastern tropical North Atlantic. Making use of vertical sections of current velocities we fit an optimum eddy-like structure to the data. The structure is assumed a slowly drifting, circular symmetric but not necessarily linear velocity field, separated in horizontal layers. The composition of the reconstructed layers provides a 3-D velocity structure which is used to calculate derived variables as vorticity and divergence. We find submesoscale divergence patterns which support vertical flux occurring in the eddies. We further use current velocities from a high-resolution regional model based on ROMS to validate the method and estimate uncertainties.

How to cite: Fischer, T., Karstensen, J., Dengler, M., Onken, R., and Holzapfel, M.: Reconstructing meso- and submesoscale dynamics in ocean eddies from current observations, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12181, https://doi.org/10.5194/egusphere-egu22-12181, 2022.

17:55–18:00
|
EGU22-833
|
On-site presentation
Etienne Pauthenet et al.

Despite the ever-growing amount of ocean's data, the interior of the ocean remains poorly sampled, especially in regions of high variability such as the Gulf Stream. The use of neural networks to interpolate properties and understand ocean processes is highly relevant. We introduce OSnet (Ocean Stratification network), a new ocean reconstruction system aimed at providing a physically consistent analysis of the upper ocean stratification. The proposed scheme is a bootstrapped multilayer perceptron trained to predict simultaneously temperature and salinity (T-S) profiles down to 1000m and the Mixed Layer Depth (MLD) from satellite data covering 1993 to 2019. The inputs are sea surface temperature and sea level anomaly, complemented with mean dynamic topography, bathymetry, longitude, latitude and the day of the year. The in-situ profiles are from the CORA database and include Argo floats and ship-based profiles. The prediction of the MLD is used to adjust a posteriori the vertical gradients of predicted T-S profiles, thus increasing the accuracy of the solution and removing vertical density inversions. The root mean square error of the predictions compared to the observed in situ profiles is of 0.66 °C for temperature, 0.11 psu for salinity and 39 m for the MLD.
The prediction is generalized on a 1/4° daily grid, producing four-dimensional fields of temperature and salinity, with their associated confidence interval issued from the bootstrap. The maximum of uncertainty is located north of the Gulf Stream, between the shelf and the current, where the variability is large. To validate our results we compare them with the observation-based Armor3D weekly product and the physics-based ocean reanalysis Glorys12. The OSnet reconstructed field is coherent even in the pre-ARGO years, demonstrating the good generalization properties of the network. It reproduces the warming trend of surface temperature, the seasonal cycle of surface salinity and presents coherent patterns of temperature, salinity and MLD. While OSnet delivers an accurate interpolation of the ocean's stratification, it is also a tool to study how the interior of the ocean's behaviour reflects on the surface data. We can compute the relative importance of each input for each T-S prediction and analyse how the network learns which surface feature influences most which property and at which depth. Our results are promising and demonstrate the power of deep learning methods to improve the predictions of ocean interior properties from observations of the ocean surface.

How to cite: Pauthenet, E., Bachelot, L., Tréguier, A.-M., Balem, K., Maze, G., Roquet, F., Fablet, R., and Tandeo, P.: Four-dimensional temperature, salinity and mixed layer depth in the Gulf Stream, reconstructed from remote sensing with physics-informed deep learning., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-833, https://doi.org/10.5194/egusphere-egu22-833, 2022.

18:00–18:05
|
EGU22-9776
|
ECS
|
On-site presentation
Omer Babiker et al.

Turbulence close beneath a free surface leaves recognisable imprints on the surface itself. The ability to identify and quantify long-lived coherent turbulent features from their surface manifestations only could open up possibilities for remote sensing of the near-surface turbulent environment, e.g., for assimilation into ocean models. Our work concerns automatic detection of one type of surface feature – “dimples” in the surface due to surface-attached “bathtub” vortices – based solely on the surface elevation as a function of time and space. 

Two-dimensional continuous wavelet transformations are used together with criteria for eccentricity and persistence in time, to identify candidate surface-attached vortices and track their motion. We develop and test the method from direct numerical simulation (DNS) data of turbulence influenced – and influencing – a fully nonlinear, deformable free surface.  

Comparison with the vertical vorticity in a plane close beneath the surface reveals that the method is able to identify long-lived vortical structures with a high degree of accuracy. Further tests of success rate included the vortex core identification method of Jeong and Hussain (1995). Different mother wavelets were tested, showing that the simplest option – the Mexican hat – outperforms more advanced options. 

Jeong, J., & Hussain, F. (1995). On the identification of a vortex. Journal of fluid mechanics, 285 69-94. 

How to cite: Babiker, O., Bjerkebæk, I., Xuan, A., Shen, L., and Ellingsen, S. Å.: Identifying and tracking surface-attached vortices in free-surface turbulence from above: a simple computer vision method , EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9776, https://doi.org/10.5194/egusphere-egu22-9776, 2022.

18:05–18:10
|
EGU22-10579
|
ECS
|
|
On-site presentation
Nikki Rahnamaei and David Straub

It has long been appreciated that Ekman transport and pumping velocities are modified through interactions with underlying geostrophic currents. Nonlinearity involving interaction of the Ekman flow with itself is, however, typically neglected. This nonlinearity occurs when the Rossby number based on the Ekman velocity and horizontal length scale approaches order one values. Such values are common, for example, in the ice-ocean stress field across sharp gradients such as leads in the sea ice cover. Recent work has shown strong asymmetry in the pumping velocities, with cyclonic forcing producing diffuse upwelling and anticyclonic forcing producing sharp downwelling fronts. To better understand this dynamics, we consider the steady response to a simple specified prescription of the stress. In the (x-z) plane perpendicular to the stress, dynamics are described by the 2-D Navier-Stokes equation, with a forcing term dependent on vertical shear of velocity in the y-hat direction, specified by a pressureless momentum equation. An expansion in an Ekman-velocity based Rossby number is used to solve the system and to better understand the asymmetry. Interactions with stratification and underlying geostrophic currents are also considered, and examples of where these effects might be important are given.

How to cite: Rahnamaei, N. and Straub, D.: Intense Downwelling and Diffuse Upwelling in a Nonlinear Ekman Layer, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10579, https://doi.org/10.5194/egusphere-egu22-10579, 2022.

18:10–18:15
|
EGU22-11160
|
ECS
|
|
On-site presentation
Raffaello Foldes et al.

Investigating energy injection mechanisms in stratified turbulent flows is critical to understand the multi-scale dynamics of the atmosphere and the oceans. Geophysical fluids are characterized by anisotropy, supporting the propagation of gravity waves. Classical paradigms of homogeneous isotropic turbulence may therefore not apply, the energy transfer in these frameworks being determined by the interplay of waves and turbulence as well as by the presence of structures emerging intermittently in space and time. In particular, it has been observed that stably stratified fluids can develop large-scale intermittent events in the form of extreme vertical velocity drafts, in a specific range of Froude numbers ([1]). These events were found to be associated with the enhancement of small-scale intermittency ([2]) and local dissipation ([3]). Here we verify the possibility that such extreme vertical drafts may release energy to the flow, affecting its overall dynamics and energetics. The analysis presented consists in the implementation of a space-filtering technique ([4]) applied to three-dimensional direct numerical simulations of the Boussinesq equations.

The strength of this approach relies on dealing with quantities (referred to as “sub-grid terms”) which are a reliable proxies of the classical Fourier flux terms but defined locally in the physical space, allowing for a scale analysis of the energy transfer at specific location of the domain flow. By investigating the correlation between values of the sub-grid terms and the presence of the extreme values of the vertical velocity, we found an increase in the energy transfer at intermediate scales that is likely to be associated with the development of vertical drafts in the flow. In the range of the governing parameters (namely the Froude and the Reynolds numbers) in which the extreme vertical drafts are detected in stratified turbulent flows, enhancement of the coupling between kinetic and potential energy modes is also observed, feeding in turn the scale-to-scale potential energy transfer.

 

[1] Feraco et al., EPL, 2018

[2] Feraco et al., EPL, 2021

[3] Marino et al., PRF, in review

[4] Camporeale et al., PRL, 2018

How to cite: Foldes, R., Cerri, S. S., Marino, R., Feraco, F., and Camporeale, E.: Local energy release by extreme vertical drafts in stratified geophysical flows, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11160, https://doi.org/10.5194/egusphere-egu22-11160, 2022.

18:15–18:20
|
EGU22-8271
|
ECS
|
Virtual presentation
Yoana G. Voynova et al.

In fall 2020 and 2021, two field surveys examined the water column dynamics and surface mixing in a shallow lagoon, Szczecin (Stettin) Lagoon, located at the border between Germany and Poland. This was part of a larger experiment, looking into water column and air-sea interactions, and momentum fluxes, but this study is focused on how the presence of proposed Langmuir circulation affects the carbon and oxygen dynamics, and primary production in this shallow lagoon.

Measurements were collected from a station in Szczecin Lagoon, located near the Polish border, with water depth of about 4 meters. Measurements at and around the station were made using mobile FerryBox systems, or Pocket FerryBoxes, which measured almost continuously water temperature, salinity, dissolved oxygen, chlorophyll fluorescence, pH, turbidity, colored dissolved organic matter (CDOM) and in 2021 partial pressure of CO2 (pCO2). In addition, water column measurements of currents (ADCP) and water level were available, as well as surface drifters, and drone aerial measurements.

We found that during low wind conditions, the water column was well-mixed to a depth controlled by expected Langmuir cells, and bottom waters below this depth were quite different in most of the biogeochemical parameters measured. Therefore Langmuir circulation most likely controlled water column structure in large regions of the Szczecin Lagoon, consequently influencing the community, carbon and dissolved gas distributions in this shallow lagoon, and most likely the air-sea gas exchange rate. Only during short storm events, these conditions changed, and the water column structure and concentrations of biogeochemical parameters were altered.

How to cite: Voynova, Y. G., Buckley, M. P., Stresser, M., Cysewski, M., Bödewadt, J., Gehrung, M., and Horstmann, J.: Effect of Langmuir circulation on mixing and carbon dynamics in a shallow lagoon, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8271, https://doi.org/10.5194/egusphere-egu22-8271, 2022.

18:20–18:30
Discussion II