EGU 2009 Programme Group Schedule ## NH - Natural Hazards O: Oral Presentation (Lecture Room) / P: Poster Presentation (Poster Hall) TB: 1: 8:30-10:00 / 2: 10:30-12:00 / 3: 13:30-15:00 / 4: 15:30-17:00 / 5: 17:30-19:00 Division Business Meeting: Thursday, 12:15–13:15, Room 29 | NH1.1 Precipitation Science | Session | Title | TB | MO | TU | WE | TH | FR | |--|-----------|---|----|---------|----------|--------|----------|----------| | HS8.1/ AS4.1/ AS4.1/ NH1.2/ NH1.2/ NH1.2/ NH1.2/ NH1.2/ NH1.2/ NH1.2/ NH1.2/ NH1.3/ Assessment of Weather-related Risk on Agricultural Production and Agribusiness 1 | NH1.1 | Precipitation Science | | | | | | | | NH1.7/ | | | | | | | | | | NH NH NH NH NH NH NH NH | | | _ | | | | | | | HS8.17 | | | | | | P(XY) | | _ | | NASA-1/ Ask-1/ | TIGO 1/ | D 111 1 | | | O (6) | | | | | AS4.1/ NP1.26 NP3.6 NH1.4 Extreme Events Induced by Weather and Climate Change: Evaluation, Forecasting and Proactive Planning NH1.5/ HS13.01 NH1.7/ AS4.4 NH2.1 Eightning and its Atmospheric Effects NH2.1 Floods: monitoring, modelling, risk and uncertainty NH2.1 Floodplain mapping and flood prevention techniques in the 21st century GM3.3/ CCL65/ HS13.03/ NP2.3 HS10.2/ RF18sh flood events: observations, processes and forecasting HS10.2/ Hydrological extremes: from droughts to floods NH2.5 Quantitative Methods for Desertification Monitoring and Assessment and Climate Change Impacts NH2.9 Alluvial fans and debris cones: Risk assessment and Climate Change Impacts NH3.1/ Volcanic threats: hazard identification, assessment and climate during time and risk mitigation NH3.1/ Volcanic threats: hazard identification, assessment and risk mitigation RH3.1/ GMPV22 NH3.1/ Volcanic threats: hazard identification, assessment and risk mitigation RH3.1/ Volcanic threats: hazard identification, assessment and risk mitigation RH3.1/ Volcanic threats: hazard identification, assessment and risk mitigation RH3.1/ Volcanic threats: hazard identification, assessment and risk mitigation RH3.1/ Volcanic threats: hazard identification, assessment and risk mitigation | | | | | | | | - | | NH1.2/ NP3.6 Extreme Events Induced by Weather and Climate Change: Evaluation, Forecasting and Proactive Planning | AS4.1/ | application in catchment hydrology | | 0 (31) | | | | _ | | NP3.6 Extreme Events Induced by Weather and Climate Change: Evaluation, Forecasting and Proactive Planning | NH1 2/ | , , | | | | | | | | NH1.4 Extreme Events Induced by Weather and Climate Change: Evaluation, Forecasting and Proactive Planning | | | | | | | | | | Change: Evaluation, Forecasting and Proactive Planning | | Extreme Events Induced by Weather and Climate | | | | | | | | Planning | | | | O (6) | | | | | | NH1.5/ Assessment of Weather-related Risk on 1 | | | | | | | | | | NH1.5/ HS13.01 Assessment of Weather-related Risk on Agricultural Production and Agribusiness 1 | | Planning | | D (VV) | | | | | | Agricultural Production and Agribusiness | | | | P(XY) | | | | | | Agricultural Production and Agribusiness 3 0 (36) | | | | | | | | - | | NH1.7/ AS4.4 Lightning and its Atmospheric Effects | HS13.01 | Agricultural Production and Agribusiness | | O (30) | | | | _ | | NH1.7/ AS4.4 | | | | | | | | _ | | NH2.1 Floods: monitoring, modelling, risk and uncertainty 1 0 0 0 0 0 0 0 0 0 | | | | | | | | _ | | AS4.4 AS4.4 Book | NH1 7/ | Lightning and its Atmospheric Effects | | | | | | | | NH2.1 Floods: monitoring, modelling, risk and uncertainty 1 | | Lightning and its Atmospheric Effects | 2 | | | | | | | NH2.1 Floods: monitoring, modelling, risk and uncertainty 1 | AS4.4 | | 3 | | | | | | | NH2.1 Floods: monitoring, modelling, risk and uncertainty | | | | | | | | | | HS5.6/ Floodplain mapping and flood prevention 1 | (| | | | | O (29) | P(XY) | | | HS5.6/ NH2.3 Floodplain mapping and flood prevention techniques in the 21st century 1 | NH2.1 | Floods: monitoring, modelling, risk and | | | O (18) | | | | | HS5.6/ NH2.3 Floodplain mapping and flood prevention techniques in the 21st century 1 | | | | | | | | | | HS5.6/ NH2.3 Floodplain mapping and flood prevention techniques in the 21st century 1 | | uncertainty | | | | | | _ | | HS5.6/ NH2.3 Floodplain mapping and flood prevention techniques in the 21st century 1 | | | | | D (VV) | | | | | NH2.3 Toodplain inapping and flood prevention 2 0 0 0 0 0 0 0 0 0 | IICE C/ | El. 1.1. | | | F(XI) | O (34) | | - | | NH2.3 techniques in the 21st century | | | | | | | | | | CL65/ HS13.03/ NH2.4 Flash flood events: observations, processes and forecasting 1 | NH2.3 | techniques in the 21st century | | | | | | _ | | GM3.3/ CL65/ HS13.03/ NH2.4 | | | | | | | | | | CL65 HS13.03 NH2.4 | | | 5 | | | P (A) | | | | CL65/ HS13.03/ NH2.4 | GM3.3/ | Flooding and climate during the last two millennia | | | | | | | | HS13.03/ NH2.4 | | Trooming and chimate during the rase of a mineral | | | | | | | | NH2.4 | | | | | | | O (19) | | | HS10.2/ NH2.5 Flash flood events: observations, processes and forecasting 1 | | | | | | | 7.41 | | | NH2.5 Frash flood events, observations, processes and forecasting 2 0(32) | NH2.4 | | 5 | | | | P (A) | | | NH2.5 forecasting A | HS10.2/ | Flash flood events: observations, processes and | 1 | O (32) | | | | | | HS2.5/ NH2.7 Hydrological extremes: from droughts to floods NH2.7 Hydrological extremes: from droughts to floods I | | | 2 | O (32) | | | | | | HS2.5/ NH2.7 Hydrological extremes: from droughts to floods NH2.8 Quantitative Methods for Desertification Monitoring and Assessment and Climate Change Impacts NH2.9 NH3.1/ GMPV22 Hydrological extremes: from droughts to floods 1 | NH2.5 | Torecasting | | | | | | | | HS2.5/ NH2.7 Hydrological extremes: from droughts to floods NH2.7 RVA Alluvial fans and debris cones: Risk assessment and Climate Change Impacts NH3.1/ GMPV22 Hydrological extremes: from droughts to floods 2 0 (31) 0 (31) 1 2 0 (31) 1 2 0 (31) 1 2 0 (31) 5 P(XY) 1 0 (30) 2 1 0 (30) 2 1 0 (30) 2 1 0 (30) 1 NH3.1/ S P(XY) NH3.1/ GMPV22 NH3.1/ GMPV22 NH3.1/ GMPV22 | | | | | | | | | | NH2.7 NH2.8 Quantitative Methods for Desertification Monitoring and Assessment NH2.9 Alluvial fans and debris cones: Risk assessment and Climate Change Impacts NH3.1/ GMPV22 Invariance Extremes. Hold droughts to Hoods 2 3 4 5 P(XY) 5 P(XY) 5 P(XY) 7 1 0 (30) 2 3 4 5 P(XY) 7 1 0 (29) 7 1 0 (29) 7 1 0 (29) 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | P (A) | | | | | | NH2.7 NH2.8 Quantitative Methods for Desertification Monitoring and Assessment Alluvial fans and debris cones: Risk assessment and Climate Change Impacts NH2.9 NH3.1/ GMPV22 NH3.1/ GMPV22 P(A) O (31) O (31) S P(X) O (31) (3 | HS2.5/ | Hydrological extremes: from droughts to floods | | | | | | | | NH2.8 Quantitative Methods for Desertification Monitoring and Assessment NH2.9 Alluvial fans and debris cones: Risk assessment and Climate Change Impacts NH3.1/ GMPV22 Volcanic threats: hazard identification, assessment and risk mitigation NH3.1/ GMPV22 Alluvial fans and debris cones: Risk assessment and Climate Change Impacts 1 | NH2.7 | | | | | | 0 (21) | P (A) | | NH2.8 Quantitative Methods for Desertification Monitoring and Assessment NH2.9 Alluvial fans and debris cones: Risk assessment and Climate Change Impacts NH3.1/ GMPV22 Volcanic threats: hazard identification, assessment and risk mitigation 5 | 1,112,7 | | | | | | | | | NH2.8 Quantitative Methods for Desertification Monitoring and Assessment 1 | | | _ | | | | 0 (31) | _ | | Monitoring and Assessment A | NILIO 0 | On antitation Matheda for Descritication | _ | | | | | | | Monitoring and Assessment 3 | NH2.8 | | | | | | | _ | | NH2.9 Alluvial fans and debris cones: Risk assessment and Climate Change Impacts NH3.1/ GMPV22 Volcanic threats: hazard identification, assessment and risk mitigation 4 | | Monitoring and Assessment | | | | | | | | NH2.9 Alluvial fans and debris cones: Risk assessment and Climate Change Impacts 1 | | | | | | | | | | And Climate Change Impacts and Climate Change Impacts 2 3 4 5 P(XY) NH3.1/ GMPV22 Volcanic threats: hazard identification, assessment and risk mitigation 3 0(29) 3 P(XY) | NH2.9 | | 5 | | | | | | | and Climate Change Impacts A | | | | O (30) | | | | | | NH3.1/ Volcanic threats: hazard identification, assessment and risk mitigation Volcanic threats: hazard identification, assessment and risk mitigation 1 | - 12.2-17 | | | | | | | <u> </u> | | NH3.1/ Volcanic threats: hazard identification, assessment GMPV22 and risk mitigation 5 P(XY) 0(29) 3 0(29) 4 P(XY) | | | | | | | | | | NH3.1/ Volcanic threats: hazard identification, assessment and risk mitigation | | | | D. CTTT | | | | <u> </u> | | GMPV22 and risk mitigation 2 | | | | P(XY) | - | | - | 0 (20) | | GMPV22 and risk mitigation 3 P(XY) | NH3.1/ | Volcanic threats: hazard identification, assessment | | | | | | | | 4 | GMPV22 | | | | | | | | | | | . <i>G</i> | | | | | | 1 (A1) | | | | | 5 | | † | | <u> </u> | 1 | | Session | Title | TB | MO | TU | WE | TH | FR | |-----------|---|--------|--------|--------|------------------|------------------|----| | NH4.1/ | Landslides, ground-failures and mass movements | 1 | | | | | | | GM6.3 | induced by earthquakes and volcanic activity | 3 | | | | | | | | | 4 | | | O (18) | | | | | | 5 | | | P (XY)
O (18) | | | | NH4.2/ | Hydrological processes in landslide research: | 2 | | | O (18) | | | | HS11.7 | analysis and quantification | 3 | | | | | | | | | 5 | | | P (XY) | | | | NH4.3 | Landslides Triggered by Rainfall Events | 1 | | | 1 (A1) | | | | 11114.5 | Landshides Higgered by Ruman Events | 2 | | | | | | | | | 4 | | | | O (18) | | | | | 5 | | | | P (XY) | | | HS11.1/ | Rainfall triggered landslides and debris flows and | 1 | | | | | | | NH4.4 | their effect on erosion and sediment yield in river | 3 | | | | O (35) | | | | catchments | 4 | | | | | | | | | 5 | | | | P (A) | | | GM6.2/ | Processes and rates of rock slope erosion: | 2 | | | | | | | NH4.5 | weathering, detachment, and transport | 3 | | | | | | | | | 5 | | | | O (19)
P (A) | | | NH4.6 | Hydrological, hydraulic and mechanical effects of | 1 | | | | I (A) | | | 1114.0 | plants for slope stability | 2 | | | | | | | | | 4 | | | O (18) | | | | | | 5 | | | P (XY) | | | | NH4.7/ | Natural and anthropogenic hazards related to water | 1 | | | | | | | HS2.7 | reservoirs | 3 | | | | | | | | | 4 | | | | | | | | | 5 | | | P(XY) | 0 (10) | | | NH4.8 | Large slope instabilities: from dating, triggering, | 2 | | | | O (18)
O (18) | | | | monitoring and evolution modelling to hazard | 3 | | | | | | | | assessment | 5 | | | | P (XY) | | | NH4.9 | Landslides monitoring and characterization using | 1 | | | | r(AI) | | | N114.7 | high resolution DEM, LIDAR and other DEM | 2 | O (18) | | | | | | | techniques | 3 | | | | | | | | techniques | 5 | P (XY) | | | | | | NH4.10 | Impacts of climate change and land-use change on | 1 | | | | | | | | landslides | 3 | | | | | | | | | 4 | | | | | | | | | 5
1 | | | | P (XY) | | | NH4.11 | Time and intensity prediction in landslide hazard | 2 | | | | | | | | assessment | 3 | | | | O (18) | | | | | 5 | | | | P (XY) | | | NH4.12 | Remote sensing and geophysical techniques for | 1 | | | | - () | | | 1,11,2 | investigating unstable slopes | 2 | O (18) | | | | | | | investigating unstable stopes | 3 | O (18) | | | | | | | | 5 | P (XY) | | | | | | NH4.13 | Terrain Instability Analysis and Mass Movement | 2 | O (18) | | | - | | | | Prevention | 3 | | | | | | | | | 4 | P. (7 | | | | - | | NILLA 14/ | Landelide Consections | 5 | P (XY) | O (29) | | | | | NH4.14/ | Landslide Forecasting | 2 | | O (29) | | | | | HS11.6 | | 3 | | | | 1 | | | | | 5 | | P (XY) | | | | | NH4.15 | Landslide risk assessment methods and strategies | 1 | | | | | | | | Landshite fisk assessment methods and strategies | 3 | | O (29) | | | | | | | 4 | | O (29) | | | | | | 1 | 5 | | P(XY) | | 1 | | | NH4.16 Documentation and monitoring of landslides and debirs flows for mathematical modelling models from the flows flow | Session | Title | TB | MO | TU | WE | TH | FR | |--|-----------|---|----|--------|------------------|--------|--|--| | A comparison co | NH4.16 | | | | | | | | | NH4.17 Rockfalls - Analysis, Simulation and Protection | | | | | | | | O (18) | | NH4.17 Rockfalls - Analysis, Simulation and Protection 1 | | design of mitigation measures | | | | | | | | NH5.1/ SM4.5 Earthquake Risk and Loss Estimates: New Directions (including Sergey Soloviev and Plinius Medal Lectures) | NIII 4 17 | Deal-falls Analysis Cimpletian and Destruction | _ | | | | P (XY) | | | NH5.1/ SM4.5 Earthquake Risk and Loss Estimates: New 1 1 1 1 1 1 1 1 1 | NH4.1/ | Rockfalls - Analysis, Simulation and Protection | | | | | | O (18) | | NH5.1/ Earthquake Risk and Loss Estimates: New 1 1 2 3 0.05 | | | | | | | | | | NH5.1/ Earthquake Risk and Loss Estimates: New Directions (including Sergey Soloviev and Plinius Medal Lectures) 1 | | | | | | | P (XY) | | | SM4.5 Directions (including Sergey Soloviev and Plinius Medal Lectures) Medal Lectures Lectu | NH5.1/ | Earthquake Risk and Loss Estimates: New | | | | | | | | Medal Lectures Seismic hazard evaluation, precursory phenomena 1 | SM4.5 | | | 0 (6) | | | | | | NH5.2/ Seismic hazard evaluation, precursory phenomena and reliability of prediction 1 | | Medal Lectures) | 4 | | | | O (6) | | | SM4.6 and reliability of prediction 2 0.030 4 0.030 4 0.030 4 0.030 4 0.030 4 0.030 0.030 4 0.030 | | , | _ | P (XY) | | | | 0 (20) | | NH5.3/ Electric, magnetic and electro-magnetic 1 | | | | | | | | | | NH5.3/ | SM4.6 | and reliability of prediction | | | | | | O (30) | | NH5.3/ Electric, magnetic and electro-magnetic phenomena related to earthquakes 1 | | | | | | | | P (XY) | | SM6.3 phenomena related to earthquakes 2 | NH5 3/ | Flectric magnetic and electro-magnetic | _ | | | | | | | NH5.4/ SM6.5 Deformation processes and accompanying 1 | | | | | | | | | | NH5.4/ | SIVIO.3 | phenomena related to cartiquakes | | | | | ` ' | P (XV) | | Method Section Secti | | | | | | | | 1 (21) | | SM6.5 mechanical and electromagnetic phenomena, for rocks and other materials, from the laboratory to the geophysical scale | NH5.4/ | Deformation processes and accompanying | | | | | | | | NH6.1 Tsunami: Science, Prevention and Mitigation 1 | SM6.5 | | | | | | | | | Tsunami: Science, Prevention and Mitigation 1 | | | 4 | | | | | P (XY) | | NH6.1 Tsunami: Science, Prevention and Mitigation 2 | | | 5 | | | | | | | Measures | NH6 1 | | | | | | | O (6) | | SM4.2/ NH6.2 Earthquake and Tsunami Early Warnings | 1110.1 | · · · · · · · · · · · · · · · · · · · | | | | | | | | SM4.2/ NH6.2 Earthquake and Tsunami Early Warnings | | Moderates | | | | | | | | NH6.2 NH6.2 Eathquake and Tsunain Early Warnings 2 3 4 0 (4) | | | | | | | P(XY) | | | NH6.2 NH6.3 Extreme Sea Waves 1 | SM4.2/ | Earthquake and Tsunami Early Warnings | | | | | | | | NH6.3 Extreme Sea Waves | NH6.2 | | | | | | | | | NH6.3 Extreme Sea Waves | | | | | | | | | | NH6.4 Coastal geo-hazards and storm surges: characterization, prediction and climate change 1 | NHIC 2 | E tours Co. W. | | O (4) | P (XY) | | 0 (30) | | | NH6.4 Coastal geo-hazards and storm surges: 1 | NH6.3 | Extreme Sea waves | | | | | | | | NH6.4 Coastal geo-hazards and storm surges: characterization, prediction and climate change 1 | | | | | | | | | | NH6.4 Coastal geo-hazards and storm surges: characterization, prediction and climate change 1 | | | | | | | P (XY) | | | Characterization, prediction and climate change | NH6.4 | Coastal geo-hazards and storm surges: | 1 | | | | | | | NH7.2 Snow avalanche formation and dynamics 1 | | | | | | | | 0 (20) | | NH7.2 Snow avalanche formation and dynamics 1 2 3 3 0 (30) 4 0 (30) 4 0 (30) 5 5 P(XY) 1 1 O(20) 2 0 (20) 1 1 O(20) 1 1 O(20) 1 1 O(20) 1 O(20) | | ,, F | | | | | | | | CR10.1/ Climate change impacts on glaciers, permafrost and related hazards 1 | | | 5 | | | | | | | CR10.1/ Climate change impacts on glaciers, permafrost 1 O(20) CL40/ and related hazards 1 O(20) CL40/ and related hazards 1 O(20) CL40/ CR8.3/ Glacial Lake Outburst Floods: Current issues - 1 O(20) CR8.3/ HS13.06/ NH7.4 CR8.3/ Spatial and temporal patterns of wildfires: models, theory, and reality CR8.3/ | NH7.2 | Snow avalanche formation and dynamics | 1 | | | | | | | CR10.1/ Climate change impacts on glaciers, permafrost and related hazards 1 | | | | | | O (30) | | | | CR10.1/
CL40/
NH7.3 Climate change impacts on glaciers, permafrost and related hazards 1 | | | | | | | | | | CL40/ NH7.3 and related hazards CR8.3/ HS13.06/ NH7.4 CR8.1/ Spatial and temporal patterns of wildfires: models, theory, and reality NH8.1/ BG2.9 Wildfires, Weather and Climate AS4.5/ CL23 CIL40/ and related hazards 2 | CP10.1/ | Climate abanca impacts on glaciers, permetrest | | | O (20) | P(XY) | | | | NH7.3 CR8.3/ HS13.06/ NH7.4 Glacial Lake Outburst Floods: Current issues - future concerns NH7.4 Spatial and temporal patterns of wildfires: models, theory, and reality NH8.1/ BG2.9 NH8.2/ NH8.2/ NH8.2/ NH8.2/ Spatial and Climate AS4.5/ CL23 Glacial Lake Outburst Floods: Current issues - 1 2 3 0 (33) P(XY) 1 2 0 (18) 3 0 (18) 4 CL23 | | | 2 | | | | | | | CR8.3/
HS13.06/
NH7.4 Glacial Lake Outburst Floods: Current issues - future concerns 1 | | and related nazards | | | | P (XY) | | | | HS13.06/ NH7.4 future concerns 2 3 O(33) P(XY) | NH/.3 | | | | | | | | | HS13.06/ NH7.4 future concerns 2 3 O(33) P(XY) | CR8.3/ | Glacial Lake Outburst Floods: Current issues - | | | | | | | | NH7.4 4 5 NH8.1/ Spatial and temporal patterns of wildfires: models, theory, and reality 1 0 (18) BG2.9 2 0 (18) 0 (18) 3 0 (18) 0 (18) 4 0 0 (18) NH8.2/ Wildfires, Weather and Climate 1 AS4.5/ 3 0 (18) CL23 4 0 (18) | | | | | 0 (33) | P (YV) | | - | | NH8.1/ Spatial and temporal patterns of wildfires: models, theory, and reality 1 | | | | | 0 (33) | 1 (A1) | | | | BG2.9 theory, and reality 2 | | | | | | | | | | Section Color Co | | | | | 0 (18) | | | | | MH8.2/ Wildfires, Weather and Climate | | | | | | | | | | NH8.2/
AS4.5/
CL23 Wildfires, Weather and Climate 1
2
3
4 0 (18) | | | 4 | | p. ave- | | | | | AS4.5/
CL23 2 3 4 O(18) | NILIO 2/ | Wildfings Weether and Climate | _ | | P(XY) | | | | | CL23 4 O(18) | | whomes, weather and Chmate | | | | | | | | CL25 | | | | | 0.01= | | | | | | | | 5 | | O (18)
P (XY) | 1 | | | | SSS18 BG2.8 Degradation, Debris Flows, & Damage Control 1 | Session | Title | TB | MO | TU | WE | ТН | FR | |--|------------|--|----|---------|----------|--------|-------|----------| | BG2.8/ Degradation, Debris Flows, & Damage Control | | Wildfire in Forest Landscapes: Desertification. | | | | | | | | NH9.1 Heavy-metal contamination of water, air, soil, and 1 | | | | | | | | | | NH9.1/ | | Degradation, Decris 110 tts, et Daninge Control | | O (24) | | | | | | NH9.1 Blazy-metal contamination of water, air, soil, and 1 1 1 1 1 1 1 1 1 | 1110.5 | | | O (24)/ | | | | | | Realy-ineal containmator of water, air, soft, and fooderops 3 | 27770 47 | | 1 | P (A) | | | | | | SSS44 | | | | P (XY) | | | | | | Natural and anthropogenic hazards in karst areas | | foodcrops | | \ / | | | | | | Natural and anthropogenic hazards in karst areas | SSS44 | | | P(XY) | | | | | | Natural Francisco Natural Hazards Natural Hazards Natural Hazards and Technological Disasters Natural Hazards and Technological Disasters Natural Hazards and applications Natural Hazards and applications Natural Hazards | NILIO 2/ | Not and and and an arranged to be and the form | | | | | | | | S | | Natural and anthropogenic nazards in Karst areas | | O (29) | | | | | | S | GM7.3 | | | O (29) | | | | | | GM7.2/ NH9.4 | | | | P (YV) | | | | - | | NH9.4 paleoenvironmental recordings | GM7.2/ | Karet systems: dynamics, avalution and | | | | | | | | NH9.5 Radon, health and natural hazards 1 1 2 0 0 0 0 0 0 0 0 0 | | | | | | | | | | NH9.5 Radon, health and natural hazards | NH9.4 | paleoenvironmental recordings | | | | | | | | NH9.5 Radon, health and natural hazards 1 | | | | P (A) | | | | | | ST14/ Space Weather and its Effects on Terrestrial and | NHQ 5 | Radon, health and natural hazards | | 1 (.1) | | | | | | ST14/ NH9.6 Space Weather and its Effects on Terrestrial and Geo-Space Environments: Science and Applications 1 | 1117.5 | Radon, health and natural mazards | | O (30) | | | | | | Space Weather and its Effects on Terrestrial and 1 | | | | | | | | | | ST14/ NH9.6 Space Weather and its Effects on Terrestrial and Geo-Space Environments: Science and Applications 4 | | | | P (XY) | | | | | | NH10.1/ | ST14/ | Space Weather and its Effects on Terrestrial and | | | | | | O(11) | | Applications | | | | | | | | O (11) | | NH10.1/ Public policy and commercial applications of 1 | 1117.0 | | | | | | | - | | NH10.1/ EG5 | | Applications | | | | | | P (XY) | | NH10.2/ Natural Hazards Education and Communications to Students, Government Officials and to the Public 1 | NH10 1/ | Public policy and commercial applications of | | | | | O (6) | | | NH10.2/ | | | | | | | | | | NH10.2/ EOS5 | LGS | natural catastrophe risk assessment | | | | | | | | EOS5 to Students, Government Officials and to the Public 2 | | | | | | | | | | EOS5 to Students, Government Officials and to the Public 2 3 4 4 5 5 9 (XY) NH10.4 Natural Hazards and Technological Disasters 1 2 0 (30) | NH10.2/ | Natural Hazards Education and Communications | | | | | | | | NH10.4 Natural Hazards and Technological Disasters | | | | | | | | P (XY) | | NH10.4 Natural Hazards and Technological Disasters | 2000 | | | | | | | | | NH10.4 Natural Hazards and Technological Disasters 2 | 1 | Tuone | 5 | | | | | | | NH10.6 Vulnerability, disaster resilience and adaptation | NH10.4 | Natural Hazards and Technological Disasters | | | | 0 (00) | | | | NH10.6 Vulnerability, disaster resilience and adaptation - concepts, methods and applications NH10.7 Social Sciences in Natural Hazards Research: Interdisciplinary Research Approaches NH10.11 Early warning systems for natural hazards and risks NH10.13 Natural hazard risk management: From risk assessment to economic aspects and societal decision making NH10.14 Lessons Learning and Best Practices for Disaster Risk Mitigation NH10.15/ Improving coordination between European civil protection and the scientific community A | | · · | | | | O (30) | | | | NH10.6 Vulnerability, disaster resilience and adaptation concepts, methods and applications 1 | | | | | | | | | | Vulnerability, disaster resinence and adaptations 2 | | | | | | P(XY) | | | | Concepts, methods and applications 3 | NH10.6 | | | | O (30) | | | - | | NH10.7 Social Sciences in Natural Hazards Research: Interdisciplinary Research Approaches S | | concepts, methods and applications | | | | | | | | NH10.7 Social Sciences in Natural Hazards Research: Interdisciplinary Research Approaches Inter | | | | | | | | | | Interdisciplinary Research Approaches Sample | | | | | P(XY) | | | | | Interdisciplinary Research Approaches Society P(XY) P(XY) | NH10.7 | | | | | | | | | NH10.11 Early warning systems for natural hazards and risks S | | Interdisciplinary Research Approaches | | | | | | | | NH10.11 Early warning systems for natural hazards and risks 1 | | | | | | | | | | NH10.13/ Natural hazard risk management: From risk EG6 assessment to economic aspects and societal decision making NH10.14 Lessons Learning and Best Practices for Disaster Risk Mitigation NH10.15/ Improving coordination between European civil protection and the scientific community 2 | NH110 11 | D 1 1 1 1 1 | | | P (XY) | | | | | NH10.13/ Natural hazard risk management: From risk EG6 assessment to economic aspects and societal decision making NH10.14 Lessons Learning and Best Practices for Disaster Risk Mitigation NH10.15/ Improving coordination between European civil protection and the scientific community A | NH10.11 | | | | O (30) | | | | | NH10.13/ Natural hazard risk management: From risk EG6 assessment to economic aspects and societal decision making NH10.14 Lessons Learning and Best Practices for Disaster Risk Mitigation NH10.15/ Improving coordination between European civil protection and the scientific community S P(XY) 1 | | risks | | | | | | | | NH10.13/ BCG6 Natural hazard risk management: From risk assessment to economic aspects and societal decision making NH10.14 Lessons Learning and Best Practices for Disaster Risk Mitigation NH10.15/ Improving coordination between European civil protection and the scientific community NH10.15/ Improving coordination between European civil protection and the scientific community NH10.15/ Improving coordination between European civil 2 | | | | | D (TATA) | | | | | EG6 assessment to economic aspects and societal decision making NH10.14 Lessons Learning and Best Practices for Disaster Risk Mitigation NH10.15/ Improving coordination between European civil protection and the scientific community Distribution 2 3 0 (30) 4 0 (30) 5 P(XY) 1 2 3 4 0 (18) 5 P(XY) NH10.15/ Improving coordination between European civil protection and the scientific community 3 0 (6) 4 0 (6) | NIII10 12/ | Noticed boundaries are a consent. From siels | | | P(XY) | | | | | decision making 4 0 (30) 5 P(XY) NH10.14 Lessons Learning and Best Practices for Disaster Risk Mitigation 1 2 | | | | | | | | | | NH10.14 Lessons Learning and Best Practices for Disaster Risk Mitigation 1 | EG6 | <u> </u> | | | | | | | | NH10.14 Lessons Learning and Best Practices for Disaster Risk Mitigation 1 | | decision making | | | | | | | | Risk Mitigation | NH10 14 | Lassons Lagraing and Rost Practices for Disaster | | | r (A1) | | | | | NH10.15/ Improving coordination between European civil protection and the scientific community A | 11110.14 | | 2 | | | | | | | NH10.15/ Improving coordination between European civil protection and the scientific community 5 P(XY) 1 2 3 O(6) 4 O(6) | | KISK IVIIIIgation | | | | | | 0.420 | | NH10.15/ Improving coordination between European civil protection and the scientific community 1 | | | | | | | | | | EG7 protection and the scientific community 2 3 0 (6) 4 0 (6) | NH10 15/ | Improving coordination between European civil | | | | | | 1 (211) | | 4 0(6) | | | 2 | | | | | | | | EG/ | protection and the selentific confindinty | | | | | | <u> </u> | | | | | 5 | | | P (XY) | | | | Session | Title | TB | MO | TU | WE | TH | FR | |------------------|--|--------|---------|--------------|------------------|--------|------------------| | NH11.1/ | Sumatra: Deformation Processes, Earthquakes, | 1 | | | O (30) | | | | G23/ | Volcanoes and Tsunamis | 3 | | | | | | | GD14/ | | 4 | | | | | | | GMPV20/ | | 5 | | | P (XY) | | | | SM3.2/
TS6.7 | | | | | | | | | | M. 1.11 1 | 1 | | | O (29) | | | | NH11.2 | Modelling and simulation of dangerous | 2 | | | O (29) | | | | | phenomena, and innovative techniques for hazard | 3 | | | O (29) | | | | | evaluation, mapping, mitigation | 5 | | | P (XY) | | | | G15/ | Ground Movement: Measurements, Subsurface | 2 | | | | | D (VV) | | NH11.4 | Causes, and Interpretation | 3 | | | | | P (XY)
O (24) | | | - | 4 | | | | | O (24) | | EOS4 | The future of European engineering: education and | 5 | | | | | <u> </u> | | LOST | research | 2 | | | 2 (0) | | | | | research | 3 | | | O (9)
O (9) | | | | | | 5 | | | P (EOS) | | | | BG4.1/ | Fire in the Earth System | 2 | | | P (BG) | | | | AS4.7 | | 3 | | | O (21) | | | | | | 4 | | | O (21) | | | | CT 41 | | 5
1 | O (13) | | | | | | CL41 | Mid-latitude Cyclones and Storms: Diagnostics of Observed and Future Trends, and related Impacts | 2 | 0 (13) | | | | | | | | 3 | | | | | | | | | 5 | P (XY) | | | | | | CL54/ | Climate time series analysis: Novel tools and their | 1 | 1 (111) | | | O (14) | | | NP4.5 | application | 2 | | | | O (14) | | | 1,1 | | 3 | | | | | | | | | 5 | | | | P (XY) | | | CR4.1 | Open Session on Permafrost | 2 | | | O (20)
O (20) | | | | | | 3 | | | 0 (20) | | | | | | 5 | | | D (VV) | | | | CR1.3 | Applied Geophysics in Cryosphere Sciences | 1 | | | P (XY) | | | | CK1.5 | Applied Geophysics in Cryosphere Sciences | 2 | | | | | | | | | 3 | | | O (20) | | | | | | 5 | | | P (XY) | | | | NP2.5 | Modelling and Understanding Geophysical | 1 2 | | | | O (16) | | | | Systems as Complex Networks | 3 | | | P (A) | 0 (10) | | | | | 4 | | | | | | | NP3.5/ | Saalas and saaling in surface and subsurface | 5
1 | | | | | | | HS13.08 | Scales and scaling in surface and subsurface hydrology | 2 | | | O (15) | P(XY) | | | пътэ.06 | nydrology | 3 | | | | | | | | | 5 | | | | | | | GM9.1 | Coastal zone geomorphologic interactions: natural | 1 | | | | | | | | versus human-induced driving factors | 3 | | | | | | | | | 4 | O (29) | | | | | | CM1 2/ | Control Transmission 17 | 5
1 | P (A) | | | | | | GM1.3/
NP3.10 | Stochastic Transport and Emergent Scaling on the Earth's Surface | 2 | | | | | | | | Earul's Surface | 3 | | <u> </u> | O (19) | - | | | | | 5 | | | P (A) | | | | NP3.2 | Atmospheric and climate complexity over wide | 1 | | 0.45 | | раиг | | | NP3.4 | ranges of scale Geophysical Extremes: Scaling representations and their applications | 3 | | O (15) | | P (XY) | | | | | 4 | | | | | | | | | 5
1 | | | O (15) | | | | | | 2 | | | 0 (13) | P (XY) | | | | | 3 | | | | | | | | | 5 | | | | | | | | | | ı | 1 | 1 | 1 | <u> </u> | | Session | Title | TB | MO | TU | WE | TH | FR | |---------|--|----|-------|----------|--------|-------|--------| | NP5.1 | Predictability, model error dynamics, and high | 1 | | | | P(XY) | | | 111 3.1 | | 2 | | | | | | | | impact events | 3 | | | O(3) | | | | | | 4 | | | | | | | | | 5 | | | | | | | HS3.2 | Fissured and karstified aquifers | 1 | | | | | | | | | 2 | | | 0.00 | | | | | | 3 | | | O (34) | | | | | | 5 | | + | O (34) | | | | | | | | | P (A) | | | | GI1/ | Open Session on Geoscience Instrumentation | 2 | | | | | | | MPRG22 | | 3 | | | | | | | | | 4 | O (7) | | | | | | | | 5 | O (7) | P (XY) | | | | | CIO | The second of the second | 1 | 0 (/) | 1 (211) | | | | | GI3 | Instrumentation for Ocean Observatories and Early | 2 | | | | | | | | Warning Systems | 3 | | | | | | | | | 4 | | O(7) | | | | | | | 5 | | P(XY) | | | | | SM4.4/ | Time-dependent earthquake processes and seismic | 1 | | Ì | | | P(XY) | | | | 2 | | | | | | | NP3.7 | hazard: physics and statistics | 3 | | | | | O (17) | | | | 4 | | | | | O (17) | | | | 5 | | | | | O (17) | | SSP16 | Tsunamites and seismites: time-space constraints | 1 | | | | | | | 551 10 | | 2 | | | | | | | | for prediction? (co-sponsored by IAS) | 3 | | | | | | | | | 4 | | | | | | | | | 5 | | | | P (A) | | | NP3.8/ | Solid Earth geocomplexity: surface processes, | 1 | | ļ | ļ | ļ | | | HS13.09 | morphology and natural resources over wide ranges of scale | 2 | | | | P(XY) | | | | | 3 | | | O (15) | | | | | | 4 | | ļ | ļ | ļ | | | | | 5 | | | | | |