On How Lithosphere and Mantle Dynamics affect Shallow Earthquakes

Mario D'Acquisto, Sylvia Brizzi, Simon Preuss, Lukas Preiswerk, Luca Dal Zilio, Iris van Zelst, Robert Herrendörfer, Taras Gerya and collaborators

Utrecht University

Ylona van Dinther

» Illustrate how lithosphere- and mantle dynamics, structure and rheology can influence shallow tectonics and seismicity

• Does incoming sediment thickness increase maximum earthquake magnitude?

- Yes; larger sedimentary wedge \rightarrow trench moves seaward and slab unbends \rightarrow slab dip $\downarrow \rightarrow$ seismogenic width $\uparrow \rightarrow$ Mmax \uparrow
- Modeling long-term dynamics and sediment presence increases Mmax by an order of magnitude !

• Do lower crustal and mantle depth temperature and rheology affect seismicity and tectonics?

• Yes, e.g., in tectonic settings driven by complex loading, such as Northern Apennines

• Does the mantle affect surface displacements at time scales of minutes to days?

- Accelerated slab penetration causes upward return "flow"

Presentation objectives

• Yes, STM models predicted a secondary zone of "coseismic" uplift, which was confirmed by observations of 4 out of 4 great megathrust earthquak

An upper crustal perspective on earthquakes

Most for simplicity ignore what happens below upper crust. For what settings does that hold?

Earthquakes

» Maybe not for orogens, subduction zones, mid ocean ridges, and likely also not really in strike-slip faults...

Lapusta et al., NSF, 2019

E.g., Schaal & Lapusta, JGR, 2019

State-of-the-art in modeling seismic cycles

First implementation of a powerlaw viscous rheology (Allison and Dunham, 2018):

Challenges next decade (Lapusta, Dunham, Avouac, Denolle, van Dinther, Faulkner Fialko, Katijama et al., NSF, 2019): Fluids, inelasticity, structural complexity lithosphere, shear heating, chemical reactions, thermomechanical coupling

2

» We can join forces!

Seismic cycles

- Earthquakes occur when fault stress exceed its strength
- » Stress and strength thus regulate earthquake nucleation, propagation and arrest

time

What affects (a)seismic slip?

van Dinther

SEAS & DR models

SEAS = sequences of SEismic and Aseismic Slip aka "seismic cycle" DR = Dynamic earthquake Rupture

What affects (a)seismic slip?

TECTONIC models

van Dinther

SEAS & DR models

SEAS = sequences of SEismic and Aseismic Slip aka "seismic cycle" DR = Dynamic earthquake Rupture

Complex interaction of processes controlling (a)seismic slip

TECTONIC models

Both feedback networks have important role for rheology, where material properties are a function of stress, temperature, fluids,...

Complex, non-linear interactions require spontaneous simulation on both processes on both ranges of time-scales

SEAS & DR models

		_	

Bridging time scales from tectonics to dynamic rupture

van Dinther

Bridging time scales from tectonics to dynamic earthquake rupture

Geodynamic evolution

 $\Delta t = 1000$ years

Seismicity

Milliseconds Millimeters

van Dinther et al., JGR, 2014b; Dal Zilio et al., EPSL, 2018

Based on 2D finite-difference with marker-in-cell code

Input

- Initial geometry and temperature
- Tectonic parameters
- Material parameters rock types

Tectonic output

- Geometry
- Distribution physical parameters
 - Viscosity, temperature, stress,

fluid pressure

Conservation of mass, momentum and energy Visco-elasto-plastic rheology

van Dinther

Thermo-Mechanical models (TM)

Seismo-Thermo-Mechanical models (STM)

Based on 2D finite-difference with marker-in-cell code

Visco-elasto-plastic rheology

Distance (km)

van Dinther

van Dinther et al., JGR, 2013a,b; Herrendörfer et al., JGR, 2018

Bridging time scales from tectonics to dynamic earthquake rupture

Slip rate-dependent friction

 $\Delta t = 1-5$ years

van Dinther

Seismicity

Milliseconds Millimeters

van Dinther et al., JGR, 2014b; Dal Zilio et al., EPSL, 2018

Brittle response mimicked by Drucker-Prager plasticity

• Localizes deformation when σ'_{II} reaches strength σ_{yield} =

$$= C + \mu \cdot \left(1 - \frac{P_{fluid}}{P_{solid}}\right) \cdot P$$

Short-term rheology: strongly slip rate dependent friction

- Brittle response mimicked by Drucker-Prager plasticity
 - Localizes deformation when σ'_{II} reaches strength $\sigma_{yield} = C + \mu \cdot (1 \frac{P_{fluid}}{P_{solid}}) \cdot P$

Slip rate $V = 2\dot{\varepsilon}'_{II(p)}\Delta x$

Friction
$$\mu_{eff} = \mu_s(1-\gamma) + \mu_s \frac{\gamma}{1+\frac{V_{vp}}{V_c}}$$

Short-term rheology: regularized rate-and-state dependent friction

- Brittle response mimicked by Drucker-Prager plasticity

Slip rate $V = 2\dot{\varepsilon}'_{II(p)}\Delta x$

Friction $\tau_{II} = \sigma_{\text{yield}} = a P \operatorname{arcsinh} \left| \frac{V_p}{2V_0} \exp\left(\frac{\mu_0 + b \ln\left(\frac{\theta V_0}{L}\right)}{a}\right) \right|$ State evolution $\frac{d\theta}{dt} = 1 - \frac{V_p \theta}{\tau}$

with adaptive time stepping and Global picard iterations

Herrendoerfer et al., JGR, 2018

Bridging time scales from tectonics to dynamic earthquake rupture

van Dinther

Rate-and-state dependent friction - invariant reformulation Resolve interseismic, coseismic and postseismic phase Simulate whole slip spectrum: a-, slow-, seismic slip $\Delta t = milliseconds - years$

Seismicity

Milliseconds Millimeters

Herrendörfer et al., JGR, 2018

Bridging time scales from tectonics to dynamic earthquake rupture

van Dinther

Dynamic earthquake rupture

Fault evolution

 $\Delta t = milliseconds$

Preuss et al., JGR, 2019

Two fault growth modes exist: seismic and aseismic

Time = 234.851 a

Preuss et al., JGR, 2019

van Dinther

Classical faulting theory retained if near-tip, time dependent friction and stress

» Mis-orientation may indicate seismic fault growth

Do these angles and characteristics depend on grid size?

Plasticity is grid size dependent (e.g., Vermeer and de Borst, 1984)

Length-scale in slip rate formulation helps with grid convergence (e.g., Needleman, 1988)

Length-scale in slip rate formulation helps with grid convergence (e.g., Needleman, 1988), but not enough for evolving fault

van Dinther

Do these angles depend on grid size?

Preuss et al., JGR, 2019; van Dinther et al., JGR, 2013a; Herrendoerfer et al., JGR, 2018

Do these angles depend on grid size?

What is fault width W if a fault has no yet localized?

van Dinther

Preuss et al., in pre.

- $\rangle\rangle$
- Does incoming sediment thickness increase maximum earthquake magnitude?

How sediment thickness influences subduction dynamics and seismicity

S. Brizzi^{1,2*}, I. van Zelst³, F. Funiciello¹, F. Corbi¹, Y. van Dinther^{3,4}

¹Laboratory of Experimental Tectonics, University of Roma Tre, Italy;²Natural and Experimental Tectonics research group, University of Parma, Italy; ³Seismology and Wave Physics, ETH Zürich, Switzerland; ⁴Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands

Under review at Earth Planetary Science Letters

Presentation objectives

Illustrate how lithosphere- and mantle dynamics, structure and rheology can influence shallow tectonics and seismicity

Does incoming sediment thickness increase maximum earthquake magnitude?

- Various observations suggest Tsed increases Mmax (e.g., Ruff, 1989; Heuret et al., 2012; Scholl et al., 2015; Seno, 2017; Brizzi et al., 2018)
- But does it? And how?

van Dinther

- Cross-scale modeling is needed because
 - Observation window <(<) recurrence interval
 - Concurrent influence of multi-parameters -

Sediment thickness controls geometry of convergent margin

Sediment thickness:

4 km

van Dinther

van Dinther

Sediment thickness controls geometry of convergent margin

• More sediments \rightarrow seaward growth wedge \rightarrow trench retreat and unbending \rightarrow shallower dip \rightarrow wider seismogenic zone

Brizzi et al., EPSL, in rev.

Sediment thickness controls Mmax and type of seismicity

van Dinther

• More sediments \rightarrow less mechanical coupling \rightarrow more slab retreat \rightarrow shallower dip \rightarrow wider seismogenic zone \rightarrow Mmax up

Brizzi et al., EPSL, in rev.

Sediment thickness controls maximum magnitude

- clarify and quantify suspected trend in nature Models

van Dinther

Sediment thickness controls maximum magnitude

Models - clarify and quantify suspected trend in nature - provide an explanation for why we might not have yet seen such large magnitudes

van Dinther

Brizzi et al., EPSL, in rev.

Why does megathrust interface strength decrease with Tsed?

- Intuitive explanation for slab dip decrease through slab retreat as interface is increasingly weaker is not cause
- What makes interface weaker, if "all" models have weak sediments?

• Warmer incoming sediments \rightarrow seismogenic zone depth \downarrow & a lighter forearc structure \rightarrow pressure in seismogenic zone \downarrow

Why model long-term dynamics?

Simulating long-term dynamics and sediment presence significantly changes quantification

van Dinther

- $\rangle\rangle$
- Does incoming sediment thickness increase maximum earthquake magnitude?

• Do lower crustal and mantle depth temperature and rheology affect seismicity and tectonics?

Tectonics and seismicity in the Northern Apennines driven by slab retreat and crustal delamination

Mario D'Acquisto^{1,2}, Luca Dal Zilio^{1,3}, Irene Molinari^{1,4}, Edi Kissling¹, Taras Gerya¹, Ylona van Dinther^{1,2}

¹Department of Earth Sciences, ETH Zürich, Sonneggstrasse 5, Zürich, Switzerland. ²Department of Earth Sciences, Utrecht University, Princetonlaan 8A/4, Utrecht, Netherlands ³Division of Geological and Planetary Science, California Institute of Technology, 1200 E California ⁴Sezione di Bologna, Istituto Nazionale di Geofisica e Vulcanologia, via Donato Creti 12, Bologna, Italy

Submitted to Journal of Geophysical Research - Solid Earth

Presentation objectives

Illustrate how lithosphere- and mantle dynamics, structure and rheology can influence shallow tectonics and seismicity

Combine available information to build regional model of Northern Apennines

van Dinther

Building an instantaneous model

D'Acquisto et al., JGR, subm. following Dal Zilio et al., EPSL, 2018

Using generic slab retreating simulations

van Dinther

Long-term dynamics needs buoyant and highly ductile material beneath suture zone

World Stress Map:

-10

10

30 450

Depth below sea level [km] 0 05 05 05 05 0

70

80

90

D'Acquisto et al., JGR, subm.

Seismicity broadly agrees with data

World Stress Map:

van Dinther

Normal faulting events in Apennine range

Thrust faulting events in Po basin

Lower crustal rheology affects stresses and seismicity

Plagioclase flow law for lower crust is too strong

» Mismatch stress and earthquake type

van Dinther

D'Acquisto et al., JGR, subm.

		150	
		100	[MPa]
	_	50	ss (σ_{xx} ')
	_	0	rmal stre
	_	-50	atoric noi
		-100	Devia
00		-150	
		150	
		100	[MPa]
	_	50	ss ($\sigma_{\rm XX}$ ')
	_	0	rmal stres
	_	-50	toric no
		-100	Devia
00		-150	

Lower crustal rheology affects stresses and seismicity

Granulite flow law for lower crust is even stronger -10

» Complete mismatch stress regime

» Need protrusion, delamination, retreat

van Dinther

D'Acquisto et al., JGR, subm.

Large-scale dynamics affects seismicity

- Seismicity can be another observable to constrain

D'Acquisto et al., JGR, subm.

		150	
		100	[MPa]
	_	50	ss (σ_{xx} ')
	_	0	mal stre
	_	-50	toric nor
		-100	Devia
00		-150	
		150	
		100	[MPa]
	_	50	ss ($\sigma_{\rm XX}$ ')
	_	0	mal stre
	_	-50	toric nor
		-100	Devia
00		-150	

- $\rangle\rangle$
- Does incoming sediment thickness increase maximum earthquake magnitude?
- Do lower crustal and mantle depth temperature and rheology affect seismicity and tectonics?
- Does the mantle affect surface displacements at time scales of minutes to days?

Pure Appl. Geophys. © 2019 The Author(s) https://doi.org/10.1007/s00024-019-02250-z

A Secondary Zone of Uplift Due to Megathrust Earthquakes

YLONA VAN DINTHER,^{1,2} D LUKAS E. PREISWERK,^{1,3,4} and TARAS V. GERYA⁴

Presentation objectives

Illustrate how lithosphere- and mantle dynamics, structure and rheology can influence shallow tectonics and seismicity

Pure and Applied Geophysics

STM models identified a new physical phenomena: a secondary zone of coseismic uplift

van Dinther

A secondary zone of coseismic uplift

STM models identified a new physical phenomena: a secondary zone of coseismic uplift

Its existence is confirmed for 4 out of 4 megathrust earthquakes analyzed, albeit at different distances and extents

van Dinther

A secondary zone of coseismic uplift exists

1960 M9.5 Valdivia earthquake

A secondary zone of coseismic uplift exists

- STM models identified a new physical phenomena

van Dinther

Its existence is confirmed for 4 out of 4 megathrust earthquakes analyzed, albeit at different distances and extents

1960

1964 M9.2 Alaska earthquake

van Dinther et al., PAGeoph, 2019

- STM models identified a new physical phenomena

van Dinther

Its existence is confirmed for 4 out of 4 megathrust earthquakes analyzed, albeit at different distances and extents

2010 M8.8 Maule earthquake

- STM models identified a new physical phenomena

van Dinther

Its existence is confirmed for 4 out of 4 megathrust earthquakes analyzed, albeit at different distances and extents

Systematic exploration through simple and complex models

First attempt to understand based on simple models

van Dinther

van Dinther et al., PAGeoph, 2019

• (1) Elastic rebound after interseismic buckling of **visco**-elastically layered lithosphere

- » Visco-elastic structure is important for surface displacements
- A back stop could play a role,
 but it is arguable if that is persistently present

• (1) Elastic rebound after interseismic buckling of **visco**-elastically layered lithosphere

van Dinther

- Visco-elastic structure is important for surface displacements **>>**
- A back stop could play a role, **>>** but it is arguable if that is persistently present

(1) Elastic rebound after interseismic buckling of visco-elastically layered lithosphere

Visco-elastic structure is important for surface displacements **>>**

500

van Dinther et al., PAGeoph, 2019

Systematic exploration through simple and complex models

• First mechanism is rebound of elastically buckled lithosphere \rightarrow assess more realistic models

- In hundreds of realistic experiments we are not able to remove uplift
 - Also not when elastic buckling is inhibited
- basic mechanism is missing **>>**

Consistent occurrence of secondary uplift

Spatiotemporal uplift in co- and postseismic period

van Dinther

- (1) Flexural buckling of a thin upper crust facilitated by a visco-elastic lower crust and mantle /backstop
- (2) Penetration of oceanic slab that induces upward flow

Deep mantle processes affect the shallow surface also at time scales of minutes and days **>>**

van Dinther

Implications

- » Subduction is NOT a gradual process
- » Could see earthquakes as integral driver of mantle flow

- Difficult to apprehend slab-mantle response at such time scales? (know behaves elastically during seismic wave propagation)
- Several times over last years we tried to disprove it, but we could not...

What do new data show?

- Model predictions on secondary zone of uplift keep being confirmed by new data
 - Predicted Secondary Zone of Interseismic Subsidence is observed
 - Revealed across Northwest Pacific (Bill Hammond et al.)
 - Postseismic data 2010 and 2011 events show majority is coseismic
 - Sorean peninsula uplifts in days after 2011 M9 Tohoku earthquake (*Kim and Bae, 2012*)

» Illustrate how lithosphere- and mantle dynamics, structure and rheology can influence shallow tectonics and seismicity

- Does incoming sediment thickness increase maximum earthquake magnitude?
 - Yes; larger sedimentary wedge \rightarrow trench moves seaward and slab unbends \rightarrow slab dip $\downarrow \rightarrow$ seismogenic width $\uparrow \rightarrow$ Mmax \uparrow
 - Modeling long-term dynamics and sediment presence increases Mmax by an order of magnitude !

Presentation objectives

Illustrate how lithosphere- and mantle dynamics, structure and rheology can influence shallow tectonics and seismicity **>>**

- Does incoming sediment thickness increase maximum earthquake magnitude?
 - Yes; larger sedimentary wedge \rightarrow trench moves seaward and slab unbends \rightarrow slab dip $\downarrow \rightarrow$ seismogenic width $\uparrow \rightarrow$ Mmax \uparrow
 - Modeling long-term dynamics and sediment presence increases Mmax by an order of magnitude !
- Do lower crustal and mantle depth temperature and rheology affect seismicity and tectonics?
 - Yes, in complex tectonic settings driven by deep loading, such as Northern Apennines

Presentation objectives

Illustrate how lithosphere- and mantle dynamics, structure and rheology can influence shallow tectonics and seismicity **>>**

- Does incoming sediment thickness increase maximum earthquake magnitude?
 - Yes; larger sedimentary wedge \rightarrow trench moves seaward and slab unbends \rightarrow slab dip $\downarrow \rightarrow$ seismogenic width $\uparrow \rightarrow$ Mmax \uparrow
 - Modeling long-term dynamics and sediment presence increases Mmax by an order of magnitude !
- Do lower crustal and mantle depth temperature and rheology affect seismicity and tectonics? • Yes, in complex tectonic settings driven by deep loading, such as Northern Apennines

• Does the mantle affect surface displacements at time scales of minutes to days?

- Accelerated slab penetration causes upward return "flow"

van Dinther

Presentation objectives

• Yes, STM models predicted a secondary zone of "coseismic" uplift, which was confirmed by observations of 4 out of 4 great megathrust earthquak

GeoMod 2020

SAVE THE DATE: June 28 - July 2, 2020

Venue:

Host: Programme: Estate "Sunny Hill" near Utrecht, The Netherlands Utrecht University

- 7 topical sessions
- 18 key note presentations
- vivid poster presentations
- 2 evening lectures
- visit to the new Earth Simulation Laboratory at Utrecht University

Register for the newsletter @ geomod2020.uu.nl

https://geomod2020.uu.nl

Earth Simulation Laboratory at UU

Role of convergence velocity *Vc*

Mechanical experiments show Vc only increases seismic rate, not maximum magnitude Mmax (e.g., Corbi et al., GRL, 2017). Adding temperature and long-term dynamics changes the story...

van Dinther

Dal Zilio et al., EPSL, 2018

Role of convergence velocity highlights importance temperature

- Faster penetration of cooler temperatures to larger depths
- Larger brittle portion \rightarrow larger and relative more larger events

Relation and magnitude agree with regional observations

Role of convergence velocity highlights importance temperature

- Faster penetration of cooler temperatures to larger depths
- Larger brittle portion \rightarrow larger and relative more larger events

van Dinther

