On How Lithosphere and Mantle
Dynamics affect Shallow Earthquakes

Ylona van Dinther

Mario D’Acquisto, Sylvia Brizzi, Simon Preuss,
Lukas Preiswerk, Luca Dal Zilio, Iris van Zelst,
Robert Herrendorfer, Taras Gerya and collaborators

N
:— NS -q- Utrecht University

NS




Presentation objectives

» lllustrate how lithosphere- and mantle dynamics, structure and rheology can influence shallow tectonics and seismicity

Does incoming sediment thickness increase maximum earthquake magnitude?

Do lower crustal and mantle depth temperature and rheology affect seismicity and tectonics?

Does the mantle affect surface displacements at time scales of minutes to days?
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An upper crustal perspective on earthquakes

~ Most for simplicity ignore what happens below upper crust. For what settings does that hold?
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State-of-the-art in modeling seismic cycles

© First implementation of a powerlaw viscous rheology (Allison and Dunham, 2018):
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© Challenges next decade (Lapusta, Dunham, Avouac, Denolle, van Dinther, Faulkner Fialko, Katijama et al., NSF, 2019):

~ Fluids, inelasticity, structural complexity lithosphere, shear heating, chemical reactions, thermomechanical coupling

» We can join forces!
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Seismic cycles

~ Earthquakes occur when fault stress exceed its strength
» Stress and strength thus regulate earthquake nucleation, propagation and arrest
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What affects (a)seismic slip?

rheology

MV

Stress
& 4—P (a-)seismic slip

strength

SEAS & DR models

SEAS = sequences of SEismic and Aseismic Slip
aka “seismic cycle”
DR = Dynamic earthquake Rupture
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What affects (a)seismic slip?

rheology rheology

M.V, Hv..
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aka “seismic cycle”
DR = Dynamic earthquake Rupture
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Complex interaction of processes controlling (a)seismic slip

rheology rheology

M.V, Hv..
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TECTONIC models SEAS & DR models

- Both feedback networks have important role for rheology, where material properties are a function of stress,
temperature, fluids,...

- Complex, non-linear interactions require spontaneous simulation on both processes on both ranges of time-scales
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Bridging time scales from tectonics to dynamic rupture
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Bridging time scales from tectonics to dynamic earthquake rupture
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Thermo-Mechanical models (TM)

- Based on 2D finite-difference with marker-in-cell code

~ Input ~ Tectonic output

- Initial geometry and temperature - Geometry

-~ Tectonic parameters ~ Distribution physical parameters
-~ Material parameters rock types - Viscosity, temperature, stress,

fluid pressure

Conservation of mass, momentum and energy

Visco-elasto-plastic rheology
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Seismo-Thermo-Mechanical models (STM)

- Based on 2D finite-difference with marker-in-cell code

¢ Input ~ Tectonic output ~ Seismicity output
e |nitial geometry and temperature - Geometry - Earthquake nucleation, propagation, arrest
e Tectonic parameters ~ Distribution physical parameters

¢ Material parameters rock types

- Viscosity, temperature, stress,

fluid pressure

Conservation of mass, momentum and energy

Visco-elasto-plastic rheology
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Bridging time scales from tectonics to dynamic earthquake rupture
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Long-term rheology: constant friction

- Brittle response mimicked by Drucker-Prager plasticity

Prlyid
Psolfi,d

© Localizes deformation when 0} 7 reaches strength 0yicia = C + - (1 ) P
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Short-term rheology: strongly slip rate dependent friction

- Brittle response mimicked by Drucker-Prager plasticity

Prlyid
Psolfi,d

© Localizes deformation when 0} 7 reaches strength 0yicia = C + - (1 ) P
Sliprate V = 250/1[(p)A33
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Short-term rheology: regularized rate-and-state dependent friction

- Brittle response mimicked by Drucker-Prager plasticity 10! | | | | | |
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Bridging time scales from tectonics to dynamic earthquake rupture

_ —® seismic slip rates!
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Rate-and-state dependent friction - invariant reformulation

Resolve interseismic, coseismic and postseismic phase

Simulate whole slip spectrum: a-, slow-, seismic slip
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Bridging time scales from tectonics to dynamic earthquake rupture
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Two fault growth modes exist: seismic and aseismic
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Classical faulting theory retained if near-tip, time dependent friction and stress

» Mis-orientation may indicate seismic fault growth
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Do these angles and characteristics depend on grid size?

-~ Plasticity is grid size dependent (e.g., Vermeer and de Borst, 1984)
© Length-scale in slip rate formulation helps with grid convergence (e.g., Needleman, 1988)

—— fault width

Y 0.8 — : -
(a) 25 | (a)
, £ 0.6
.§. Axh=1000 m
- Py Ax, =500 m
o. = —
= 1.3 g 0.4 Ax, =250 m
- o Ax =187.5 m
> h
- AX =1000 m
Q.
1t — O , a_
vy Axa—SOO m
Axa=2 50 m
0.5t . | o - 0 /_\xa=187.5 m
0 0.5 1 1.5

Slip [m] - Time [s]

van Dinther Herrendoerfer et al., JGR, 2018 12



Do these angles depend on grid size?

© Length-scale in slip rate formulation helps with grid convergence (e.g., Needleman, 1988), but not enough for evolving fault
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Do these angles depend on grid size?

© What is fault width W if a fault has no yet localized?
WE = Winae log(1 + K{2)
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Presentation objectives

> Does incoming sediment thickness increase maximum earthquake magnitude?

How sediment thickness influences subduction dynamics and
seismicity
S. Brizzi"“, I. van Zelst’, F. Funiciello', F. Corbi', Y. van Dinther’*

'L aboratory of Experimental Tectonies, University of Roma Tre, Italy: “Natural and Experimental Tectonics research group, University of
Parma, ltaly; °Seismology and Wave Physics, ETH Ziirich, Switzerland; *Department of Earth Sciences, Utrecht University, Utrecht, the

Netherlands

Under review at Earth Planetary Science Letters
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Does incoming sediment thickness increase maximum earthquake magnitude?

. Various observations suggest Tsed increases Mmax (e.g., Ruff, 1989; Heuret et al., 2012; Scholl et al., 2015; Seno, 2017; Brizzi et al., 2018)
- But does it? And how?
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~ Cross-scale modeling is needed because

Observation window <(<) recurrence interval
Concurrent influence of multi-parameters
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Sediment thickness controls geometry of convergent margin

Sediment thickness:

Seismogenic zone
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Sediment thickness controls geometry of convergent margin

~ More sediments — seaward growth wedge — trench retreat and unbending — shallower dip = wider seismogenic zone

Sediment thickness:
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Sediment thickness controls Mmax and type of seismicity

- More sediments — less mechanical coupling = more slab retreat — shallower dip — wider seismogenic zone

Sediment thickness:

— Mmax up

ransfers dissipation from outer-rise to wedge
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Sediment thickness controls maximum magnitude

- Models - clarify and quantify suspected trend in nature
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Sediment thickness controls maximum magnitude

~ Models - clarify and quantify suspected trend in nature
- provide an explanation for why we might not have yet seen such large magnitudes
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Why does megathrust interface strength decrease with Tsed?

~ Intuitive explanation for slab dip decrease through slab retreat as interface is increasingly weaker is not cause

- What makes interface weaker, if “all” models have weak sediments?
- Warmer incoming sediments — seismogenic zone depth | & a lighter forearc structure — pressure in seismogenic zone |
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Why model long-term dynamics?

- Simulating long-term dynamics and sediment presence significantly changes quantification
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Presentation objectives

» lllustrate how lithosphere- and mantle dynamics, structure and rheology can influence shallow tectonics and seismicity

e Does incoming sediment thickness increase maximum earthquake magnitude?

> Do lower crustal and mantle depth temperature and rheology affect seismicity and tectonics?

Tectonics and seismicity in the Northern Apennines
driven by slab retreat and crustal delamination

Mario D’Acquisto’?, Luca Dal Zilio'®, Irene Molinari'*, Edi Kissling!, Taras Gerya',
Ylona van Dinther!:?

1 Department of Earth Sciences, ETH Ziirich, Sonneggstrasse 5, Ziirich, Switzerland.
2Department of Earth Sciences, Utrecht University, Princetonlaan 8A/j, Utrecht, Netherlands

3 Division of Geological and Planetary Science, California Institute of Technology, 1200 E California

4Sezione di Bologna, Istituto Nazionale di Geofisica e Vulcanologia, via Donato Creti 12, Bologna, Italy

Submitted to Journal of Geophysical Research - Solid Earth
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Building an instantaneous model

- Combine available information to build regional model of Northern Apennines

Compile geological information ....
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Add thermal model

~ Using generic slab retreating simulations
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Long-term dynamics needs buoyant and highly ductile material beneath suture zone

© Run to sensible long-term deformation regimes

- To agree with stress regime and surface

displacements need - — —
~ weak lower crust
- high mantle wedge temperatures
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Seismicity broadly agrees with data

World Stress Map: extension compression
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Lower crustal rheology affects stresses and seismicity

extension compression

World Stress Map:
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Lower crustal rheology affects stresses and seismicity

- Granulite flow law for lower crust is even stronger .

» Complete mismatch stress regime

» Need protrusion, delamination, retreat
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Large-scale dynamics affects seismicity

World Stress Map:
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~ Reduce slab pull
» Shuts down extensional seismicity in range

» Should care about depths larger than ~15km

© Seismicity can be another observable to constrain
rheologies and structure

Depth below sea level [km]
(o] ~ (2] (9] faN w N
o o o o o o o

o
o

Depth below sea level [km]
~ (o] (3] By W N
o o o o o o

o
o

o
o

extension compression

Horizontal distance from Massa [km]

> < >
Reference model
| . \ / / : /D/’ - i/' P / 4 ! W ¢/ V/ A?é.—jg
L Ak SHT o
. A . ;' /(:Z’ﬁf;i: ’ \ A X
B = ' Sl ~
o _ - - - —
T O ——— i
450 © o ®
- ® °p° -
/ —_— '.f’
Topography x 5 b o
. |—=GPS velocities (Devoti et al 2011, Bennett et al 2012) N
— Model surface marker velocities
© Observed thrust fault earthquakes
® Observed normal fault eathquakes
® Model earthquakes
— Temperature [°C] _
[ l l l |
-50 0 50 100 150 200
Model with partly hotter subducted slab
] \ ] |
WW Pt R ERES
i 7 ;7 ~ e ! =
— NN / ~ / o . |
O - .’]’ - o W;ZT - ‘7.\’\55\\%-\‘/_’/;43?:5” ﬁ/p//—:’%’% > /;f'\’//x*//’\ X \ ‘%M_/? \L %’ d >
== = R = O
— ) _— @ i P —
O . A | —
o - = B e
T O o i |
450 , © o o
| o * W i
~ouV®
B - =i *;7_ " . . . -
: \ ~
- Topography x § .
. |——=GPS velocities (Devoti et al 2011, Bennett et al 2012) ' N
—= Model surface marker velocities
© Observed thrust fault earthquakes
® Observed normal fault eathquakes
@® Model earthquakes
— Temperature [°C] _|
[ [ I l |
-50 0 50 100 150 200

' 150

") [MPa]

($))]
o

-50

=100

J -150

o 150
100

50

-50

=100

J -150

van Dinther

D’Acquisto et al., JGR, subm.

XX

Deviatoric normal stress (o

") [MPa]

XX

Deviatoric normal stress (o

24



Presentation objectives

» lllustrate how lithosphere- and mantle dynamics, structure and rheology can influence shallow tectonics and seismicity

e Does incoming sediment thickness increase maximum earthquake magnitude?

e Do lower crustal and mantle depth temperature and rheology affect seismicity and tectonics?

- Does the mantle affect surface displacements at time scales of minutes to days?

Pure Appl. Geophys.
© 2019 The Author(s)
https://doi.org/10.1007/500024-019-02250-z

| Pure and Applied Geophysics

Check for
~ updates

A Secondary Zone of Uplift Due to Megathrust Earthquakes

YLONA VAN D’INTHER,I’z (© Lukas E. PREISWERK,I’3 “4 and Taras V. Gerya®
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A secondary zone of coseismic uplift

- STM models identified a new physical phenomena: a secondary zone of coseismic uplift
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A secondary zone of coseismic uplift exists

- STM models identified a new physical phenomena: a secondary zone of coseismic uplift
- Its existence is confirmed for 4 out of 4 megathrust earthquakes analyzed, albeit at different distances and extents
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A secondary zone of coseismic uplift exists

- STM models identified a new physical phenomena
- Its existence is confirmed for 4 out of 4 megathrust earthquakes analyzed, albeit at different distances and extents
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A secondary zone of coseismic uplift exists

- STM models identified a new physical phenomena

- Its existence is confirmed for 4 out of 4 megathrust earthquakes analyzed, albeit at different distances and extents
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A secondary zone of coseismic uplift exists

- STM models identified a new physical phenomena

- Its existence is confirmed for 4 out of 4 megathrust earthquakes analyzed, albeit at different distances and extents

Subsidence Uplift

>0.0m >0.0m
>0.2m >0.2 m
>0.4m >04m
>0.6m >0.6m
® >08m ®>08m
- @:>1.0m @®:>10m
d oc (O none
epicent
b @ picenter
rupture extent
2011 M9.0 Tohoku earthquake
VRS N X7
N T X\ __?‘7{
van Dinther van Dinther et al., PAGeoph, 2019

23



Systematic exploration through simple and complex models

© First attempt to understand based on simple models
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What is the governing physical mechanism?

\ Gravity
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What is the governing physical mechanism?

- (1) Elastic rebound after interseismic buckling of visco-elastically layered lithosphere

\ Gravity
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» Visco-elastic structure is important for surface displacements

TN

» A back stop could play a role,
but it is arguable if that is persistently present
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What is the governing physical mechanism?

- (1) Elastic rebound after interseismic buckling of visco-elastically layered lithosphere

lower crust
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What is the governing physical mechanism?

~ (1) Elastic rebound after interseismic buckling of visco-elastically layered lithosphere
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Systematic exploration through simple and complex models

~ First mechanism is rebound of elastically buckled lithosphere — assess more realistic models

: — 100 °
A © e 100
100 00 °
'€ 200
=<
N
300
-800 -600 -400 -200 0 200 400 00
distance to trench (km)
0 50 100 150 200 250 300 350
—air | | | | 7 | | | |
0 a— _=_ ____ ' upper continentalcrusti
| e :::::_':_:?:-::_:"""“_: ___________ lower continental crust
- 20 ~~~~:::: ---------------------------------------------
N ——— Dy,
=< 40
N -----------------
60 [, ¥
~~~~~~ ' asthenospheric mantle
80 Bl ,_
Trench | Seismogenic zone | Ductile shearing
Isotherms

: : 18 20 22 24
l0g10(Viscosity) (Pas) ot o — .______. rock type boundaries

van Dinther van Dinther et al., PAGeoph, 2019 10



Consistent occurrence of secondary uplift

© In hundreds of realistic experiments we are not able to remove uplift

~ Also not when elastic buckling is inhibited
» basic mechanism is missing

Vertical surface displacement [m]
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Spatiotemporal uplift in co- and postseismic period
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-50

Trench o

50

100

150

200

Distance from trench [km]

250

300

G E QTN UK E sl

Uplift per timestep [m]

Oceanic slab

Secondary uplift

—

230 =

240 |-
250 |-

timestep

260 -

0.5

0.4

0.3

0.2

0.1

-0.1

-0.2

-0.3

-0.4

-0.5

van Dinther

van Dinther et al., PAGeoph, 2019

11



What is the governing physical mechanism?

¢ )
© (2) Penetration of oceanic slab that induces upward flow
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Implications

» Deep mantle processes affect the shallow surface also at time scales of minutes and days

» Subduction is NOT a gradual process
» Could see earthquakes as integral driver of mantle flow

destination

7 \\x

Difficult to apprehend slab-mantle response at such time scales?
(know behaves elastically during seismic wave propagation)

origin

\
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=P velocity

streamline

stress indicator
e displaced material

low viscosity region

@ interplate decoupling point

Several times over last years we tried to disprove it, but we could not...
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What do new data show?

- Model predictions on secondary zone of uplift keep being confirmed by new data

- Predicted Secondary Zone of Interseismic Subsidence is observed
- Revealed across Northwest Pacific (Bill Hammond et al.)

- Postseismic data 2010 and 2011 events show majority is coseismic

- Korean peninsula uplifts in days after 2011 M9 Tohoku earthquake
(Kim and Bae, 2012)
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Presentation objectives

» lllustrate how lithosphere- and mantle dynamics, structure and rheology can influence shallow tectonics and seismicity

- Does incoming sediment thickness increase maximum earthquake magnitude?

> Yes; larger sedimentary wedge — trench moves seaward and slab unbends — slab dip | — seismogenic width T = Mmax T
- Modeling long-term dynamics and sediment presence increases Mmax by an order of magnitude !
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Presentation objectives

» lllustrate how lithosphere- and mantle dynamics, structure and rheology can influence shallow tectonics and seismicity

- Do lower crustal and mantle depth temperature and rheology affect seismicity and tectonics?

- Yes, in complex tectonic settings driven by deep loading, such as Northern Apennines
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Presentation objectives

» lllustrate how lithosphere- and mantle dynamics, structure and rheology can influence shallow tectonics and seismicity

Does the mantle affect surface displacements at time scales of minutes to days?

Yes, STM models predicted a secondary zone of “coseismic” uplift, which was confirmed by observations of 4 out of 4 great megathrust earthquake
Accelerated slab penetration causes upward return “flow”
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Role of convergence velocity Vc

~ Mechanical experiments show Vc only increases seismic rate, not maximum magnitude Mmax (e.g., Corbi et al., GRL, 2017).
- Adding temperature and long-term dynamics changes the story...

- Mmax does increase!
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Role of convergence velocity highlights importance temperature

© Faster penetration of cooler temperatures to larger depths - Relation and magnitude agree with regional observations
© Larger brittle portion — larger and relative more larger events
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Role of convergence velocity highlights importance temperature

© Faster penetration of cooler temperatures to larger depths

© Larger brittle portion — larger and relative more larger events

0 .: PR B !. - ,|
| BPPer ; Decaépening of the |
101"S" ¥ | | brittle strength |
' Lower \ Brittle strength :
crust == I
30 | L
204 Li 5pherlc :
{ /mantle ? -
E0=10 S
604 = Tmoro = 650 °C |- LOW VC
/| == Tmono = 550 °C
/0
0 300 600 900 1200

Differential stress (MPa)

T T T T 7T
sSelsmogenic zone

J._l_-I.l

w150 °C isotherm

m 450 °C isotherm

10 20 30 40 50 60

Convergence rate (mm yr'1)

b-value

Nature
9 T
85F R=0.91 &+
L -~ 1
8 F ot -
: e ]
7.55. Rt 5
T .7 -
- - ;
6.5;—. -
6:--..I....l-.-.l..-.l....-
0 10 20 30 40 50
—
1.2F R
C .Ap-e nnnnnnn b
11:— O Zagro ':
15- B Himalay -5
o.9§-| 1~
08F R=-0.92 +
07 AT BPAT AT AT BT BT T S
0 10 20 30 40 50

Convergence rate (mm/yr)

Model
b
9 T
O mm .
585 8 omm ;
0 O mm - .
o 8| m ggmmz -8 7
2 75E PR ;
= _B
X 7F = :
> g
6'5;' R =0.98 E
6'....l....l....l....l....l....
0O 10 20 30 40 50 60
C
1.7 prerer e e
11E E
2
o TF = r
= . m\
S 0.9F - :
: ~
-00.82- > .n
0'75' R =-0.98 E
0-6'....l....l....l....l....l....

O 10 20 30 40 50 60
Convergence rate (mm/yr)

» More ductile deformation in Alps, so lower seismic hazard than in Himalaya
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