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> life might have started at the bottom of Earth’s oceans
» water-rock interactions — rich communities of organisms

» Galileo & Cassini: deep oceans within the icy moons — ocean worlds

» Europa:

- induced magpnetic field

- geologic evidence

» Ganymede:

- induced magpnetic field

- auroral ovals oscillation
» Titan:

- electric signal variations
- large Love number

» Enceladus:

- geysers

- libration of outer layer
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Ganymede Titan

» full differentiation: » partial differentiation:
Mol=0.310 Mol=0.3414

» tenuous O, exosphere » dense N»-CHy4-Ar atmosphere

> intrinsic magnetic field — possibly ongoing exchange?

Ice I crust Mol=0.3414 (5)

Organic rich
atmosphere

Hydrous
silicate core

Deep ocean
HP ice layer

Ice | crust Deep ocean

Mol=0.310 (3)




Ganymede

» dehydrated mantle
+ thick HyO layer

» H=>400 km: only ice VI

silicates

TIK]

L L T T
250 300 350

~2.0

P [GPa]



Ganymede Titan

» dehydrated mantle » core of hydrated silicates
+ thick HyO layer + thinner HyO layer
» H=>400 km: only ice VI » H~50-300 km: ices VI, V, IlI?
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» HP ice dynamics governs heat extraction from the interior

» 1d thermo(chemical) evolution of the whole hydrosphere:
e.g. Kirk & Stevenson (1987), Grasset & Sotin (1996), Showman &
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a) T=T,, heat transfer through HP ice not treated
b) use of scaling laws based on the hot TBL instability

» effect of ice phases transitions on convection:
a) linear stability analysis (Bercovici +, 1986; Sotin & Parmentier,1989)
b) 2d convection in ice VI and VII mantle (Journaux & Noack, 2015)






Heat and material exchange

» Choblet + (2017): solid-state thermal convection in 3d spherical
» Tinax and Tuyrg > Tmelt in the upper part
— cold thermal boundary layer cannot exist in a solid state




Heat and material exchange

» Choblet + (2017): solid-state thermal convection in 3d spherical
» Tinax and Tuyrg > Tmelt in the upper part

— cold thermal boundary layer cannot exist in a solid state

— two-phase mixture model (sercovici +, 2001; $ramek +, 2007)










Model setting

» pure HyO system (solid ice & liquid water):

a) T;<T™: one-phase material: cold ice

b) T;=T,=T™: phases coexist in thermal equilibrium: temperate ice



Model setting

» pure HyO system (solid ice & liquid water):

a) T;<T™: one-phase material: cold ice
b) T;=T,=T™: phases coexist in thermal equilibrium: temperate ice
c) Tw>T™: one-phase material (water only)



Model setting

» pure HyO system (solid ice & liquid water):

a) T;<T™: one-phase material: cold ice

b) T;=T,=T™: phases coexist in thermal equilibrium: temperate ice

¢) Fr>Fm.



Model setting

» pure HyO system (solid ice & liquid water):

a) T;<T™: one-phase material: cold ice
b) T;=T,=T™: phases coexist in thermal equilibrium: temperate ice
c) >

» porosity ¢= \/-va (vol. fraction of water in the mixture)

» amount of ice: 1—¢




Model setting

» pure HyO system (solid ice & liquid water):

a) T;<T™: one-phase material: cold ice
b) T;=T,=T™: phases coexist in thermal equilibrium: temperate ice

¢) Fr>Fm.

Vi
VitV

» amount of ice: 1—¢

» porosity ¢= (vol. fraction of water in the mixture)

» different material densities — 2 mass balances
» phase separation — 2 linear momentum balances

» thermal equilibrium between the two phases — 1 energy balance
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4. Melting/freezing — compressible mixture — V - v; #0 — QN%

5. Melt
>

v

v

— latent heat L., consumption/release ; solid phase change

buoyancy: Ap=p;—p. # 0 — water percolation through ice
mass balance of mixture
A
Vv + Vo [$vw—vi)] = — T

i P
linear momentum balance of ice

0=—VN—(1-¢)pio; Tg — $Apg + V - (1=¢)os + V [7(1_(;’5)‘“ (

Vv - Vi):|
energy balance of mixture (v = (17¢)0';:Vv;+%pi(v-vi)er%(vwfv;)z)

O/ Ay
pict— +pcPv - VT —piTav-g+Tmlm +Ts L =V - (kVT) + ¥

1ot
linear momentum balance of water ~ Darcy law
K,
Vo — Vi = ——2(1-¢)Apg
Hw P

mass balance of water — advection of porosity
(o]0} .
v VAROV ))—
ot P
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Implementation

» FEniCS (fenicsproject.org, Logg +, 2012; Alnaes +, 2015), MPI

A

ocean: free slip, free water outflow, T=T,,

sides: free slip,
water impermeable,
thermally insulating

silicates: no slip, water impermeable, heat flux g 4

< >
2H




Reference simulation for Ganymede

H=200 km, ;=10 Pa s, g;=20 mW m—?2
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Reference simulation for Ganymede

H=200 km, ;=10 Pa s, g;=20 mW m—?2

- t~10.00 Myr o

0 100 200 300 400 0 100 200 300 400

200
§ 100
N
0 8
0 5 10 15 20 05 1 2
(T - T) [K] ¢ [%]

» silicates: T=T™, ¢~few %: volatiles leaching
» interior: T2V<T™: melt can freeze; upwellings: volatiles transport
» ocean: T=T™, ¢~a¢,: volatiles dissolution into the ocean

z [km]



Increasing HP ice layer thickness H (~ increasing Ra)

T[K] % [km] % [km]
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Increasing HP ice layer thickness H (~
TIK]
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Increasing HP ice layer thickness H (~ increasing Ra)

T [K] % [km] % [km]
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Increasing HP ice layer thickness H (~ increasing Ra)
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Increasing HP ice layer thickness H (~ increasing Ra)
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Long-term evolution modeling

» 2d model: strong dependence on input parameters:
- HP ice layer thickness H
- ice viscosity u;

- silicates heat flux g



Long-term evolution modeling

» 2d model: strong dependence on input parameters:
- HP ice layer thickness H
- ice viscosity u;

- silicates heat flux g

» 1d thermo(-chemical) evolution model:
- scaling laws for rocky interior, HP ice layer, ocean, ice | crust
- gs and H are part of solution

- [ remains an input parameter
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Critical heat flux for bottom melting

» fixed viscosity u;, range of g5 and H

— critical ¢S for bottom melting:
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Critical heat flux for bottom melting

» fixed viscosity u;, range of g5 and H

— critical ¢S for bottom melting:

- exchange degree: Py
@ direct (1) limited (3)
indirect (2) @ no (4)
T 307 bottom melting
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E 20 @ O @
&
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Present-day bottom melting: Ganymede vs Titan

» Titan, u; = 10 Pas: ¢ ox H > gs~5-15 mW m~—2
> u; = 101%-10%° Pa s » Ganymede: H>400 km
» scaling for Ganymede » Titan: H~50-300 km
50 = " ] N ! : & 2 : L /r;
ice viscosity: // po"J
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Present-day bottom melting: Ganymede vs Titan
» Titan, u; = 10 Pas: ¢ ox H

> 1; = 10-10%° Pa

S

» scaling for Ganymede

> gs~5-15 mW m—2
» Ganymede: H>400 km
» Titan: H~50-300 km

50 ————1 i e
ice viscosity: // o
__1014 __1015 ._,1016 - /.

40 Fs T
moon: - T
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g 30+
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— Titan: melting at silicates interface and leaching of “°Ar?
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Conclusions

» two-phase model necessary to address melt evolution

» melting at the interface with silicates — volatiles leaching
» small amount of water (¢~few %)

» volatiles transfered by upwelling plumes — extraction into ocean
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Conclusions & perspectives
» two-phase model necessary to address melt evolution
» melting at the interface with silicates — volatiles leaching

» small amount of water (¢~few %)

» volatiles transfered by upwelling plumes — extraction into ocean

» Ganymede: exchange more likely early in its evolution
» Titan: exchange possibly ongoing: transport of “°Ar into the ocean?

» further development: effect of salt & ammonia on 7™ and Ap
» thermo-chemical evolution model — Cassini, JUICE & Dragonfly



Exploring the emergence of habitable worlds around gas giants

Two mission phases:
- Jupiter Tour (~2.5 yr): Jovian atmophere

& magnetosphere
Europa & Callisto flybys
- Ganymede Tour (-1 yr): in Ganymede orbit




- rotocraft lander
- dozens of locations
- launch 2026, arrival 2034




Conclusions & perspectives

» two-phase model necessary to address melt evolution

» melting at the interface with silicates — volatiles leaching
» small amount of water (¢~few %)

» volatiles transfered by upwelling plumes — extraction into ocean

» Ganymede: exchange more likely early in its evolution
» Titan: exchange possibly ongoing: transport of 4°Ar into the ocean?

» further development: effect of salt & ammonia on 7™ and Ap
» thermal evolution model — Cassini, JUICE & Dragonfly

Thank you for your
attention!
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