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Ganymede
I full differentiation:

MoI=0.310
I tenuous O2 exosphere
I intrinsic magnetic field

Titan
I partial differentiation:

MoI=0.3414
I dense N2-CH4-Ar atmosphere
→ possibly ongoing exchange?
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Heat and material exchange

I no direct contact between the silicates and the ocean
I BUT: material exchange possible through convection
I HP ice dynamics governs heat extraction from the interior

I 1d thermo(chemical) evolution of the whole hydrosphere:
e.g. Kirk & Stevenson (1987), Grasset & Sotin (1996), Showman &
Malhotra (1997), Tobie + (2005), Fortes + (2007), Grindrod +
(2008), Bland + (2009), Noack + (2016)

a) T=Tm, heat transfer through HP ice not treated
b) use of scaling laws based on the hot TBL instability

I effect of ice phases transitions on convection:
a) linear stability analysis (Bercovici +, 1986; Sotin & Parmentier,1989)
b) 2d convection in ice VI and VII mantle (Journaux & Noack, 2015)
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Model setting

I pure H2O system (solid ice & liquid water):

a) Ti<Tm: one-phase material: cold ice
b) Ti=Tw=Tm: phases coexist in thermal equilibrium: temperate ice
c) Tw>Tm: one-phase material (water only)

I porosity φ= Vw
Vi+Vw

(vol. fraction of water in the mixture)
I amount of ice: 1−φ

I different material densities → 2 mass balances
I phase separation → 2 linear momentum balances
I thermal equilibrium between the two phases → 1 energy balance
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Governing equations
1. Thermal convection in ice - incompressible extended Boussinesq approximation

2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw

3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρic
p
i → ρic

p
i

4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µi
φ

→ latent heat Lm consumption/release ; solid phase change
5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through ice

I mass balance of ice
∇ · vi = 0

I linear momentum balance of ice
0 = −∇Π− ρiαiTg +∇ · σi

I energy balance of ice

ρic
p
i
∂T
∂t

+ ρic
p
i vi · ∇T − ρiTαivi · g = ∇ · (ki∇T ) + σi : ∇vi

I linear momentum balance of water ∼ Darcy law

vw − vi = −
Kφ

µwφ
(1−φ)∆ρg

I mass balance of water → advection of porosity
∂φ

∂t
+∇ · (φvw) =

Γm

ρw
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Material parameters
I ice permeable to water transport above a threshold porosity φc

Kφ =

{
k0(φ−φc)2 φ ≥ φc
0 φ < φc

I temperature and depth dependent ice viscosity

µi = µ0 exp
[

Q
R

(
1
T
−

1
Tm(z)

)]



Implementation

I FEniCS (fenicsproject.org, Logg +, 2012; Alnaes +, 2015), MPI



Reference simulation for Ganymede

H=200 km, µi=1015 Pa s, qs=20 mW m−2

I silicates: T=Tm, φ∼few %: volatiles leaching
I interior: T av<Tm: melt can freeze; upwellings: volatiles transport
I ocean: T=Tm, φ∼φc: volatiles dissolution into the ocean
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(3) Limited exchange ∼ medium Rayleigh number

(4) No exchange ∼ large Rayleigh number
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I degree of exchange decreases with
I increasing ice layer thickness H (∼ time)

I decreasing ice viscosity µi
I decreasing heat flux from silicates qs
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I melting at the interface with silicates → volatiles leaching
I small amount of water (φ∼few %)
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I Ganymede: exchange more likely early in its evolution
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