MODELLING MANTLE CONVECTION with Chemical and Rheological Heterogeneities

Juliane Dannberg Rene Gassmoeller

University of Florida, University of California, Davis

MANTLE HETEROGENEITY ABOVE THE CMB

McNamara, 2019

MANTLE HETEROGENEITY ABOVE THE CMB

Plume cluster

Superplume

Stable pile

Metastable pile

Garnero et al., 2016

OUTLINE

- ***** First-order effect: Thermal heterogeneities
- ***** Topics I will talk about today:
 - (1) Chemical heterogeneities
 - (2) Rheologicalheterogeneitiesassociated withgrain size variations
 - (3) Heterogeneitiesdue to melting andmelt transport

ASPECT

- Modern numerical methods: adaptive mesh refinement, linear and nonlinear solvers, higher-order discretizations, parallel scalability
- Usability and extensibility: manual: 450+ pages, 40+ cookbooks/examples, plugin architecture
- Community software

 open source and developed in
 the open, tested foundation,
 45+ contributors

CHEMICAL HETEROGENEITIES: SUBDUCTED SLABS, THERMO-CHEMICAL PILES, PLUME GENERATION ZONES

PLUME GENERATION ZONES

 Many oceanic islands lie at the edges of LLSVPs when projected down to the core-mantle boundary (Thorne et al., 2004, Torsvik et al., 2006)

CHEMICAL TRENDS IN OCEAN ISLANDS

- Many oceanic islands lie at the edges of LLSVPs when projected down to the core-mantle boundary.
- Some oceanic islands display parallel volcanic chains with distinct geochemical trends.

SOURCE OF CHEMICAL ZONING

in ocean islands are aligned with LLSVP outlines.

PLUMES FROM THE EDGES OF PILES

 If dense piles have steep edges, than plumes will rise preferentially near the edges (Tan et al., 2011)

Plumes rising from the edges

(a) case A4 (b) case A5 (c) ca

Plumes rising from the center

ENTRAINMENT OF A DENSE LAYER

* Buoyancy ratio: $B = \frac{\Delta \rho_C}{\rho_0 \alpha \Delta T}$

* Problem:

Dense material is entrained symmetrically, starting at low density contrasts.

From Jones et al., 2016

QUESTIONS

- How does bilateral chemical zoning develop in mantle plumes? (with realistic densities of entrained material)
- Hypothesis: Due to subducted slabs pushing material against the LLSVPs in the lowermost mantle
- > Validation by computational models needed!

- Under which conditions is this zonation preserved and visible in melt compositions?
- How can geochemical observations at the surface be linked to the structure of the deep mantle?

SIMPLE 2D EXPERIMENTS

 Subducted slabs moving towards the dense piles can make the plume generation zones asymmetric!

MORE REALISTIC MODEL SETUP

- ★ 3d regional convection models with ASPECT
- ★ Adaptive mesh, max. resolution of 10 km

Material properties from PerpleX: **Pile:** recycled oceanic crust (100%) **Mantle:** harzburgite (82%) + recycled oceanic crust (18%) Boundary conditions from **global model**, employing **plate reconstructions** for the last 250 Myr₁₄

QUANTIFYING BILATERAL ZONING

- Slices through the plume tail at 500 km depth
- Overlap of regions
 with highest plume
 temperature (white
 areas) and highest
 content of recycled
 crust (blue contours)
- Both bilateral and concentric zoning

ZONING: DEPENDENCE ON TEMPERATURE

ZONING: DEPENDENCE ON ANGLE

- Small angle
- Bilateral zoning develops only if lower mantle flow is roughly perpendicular to the edges of the piles.

DEVELOPMENT OF BILATERAL ZONING

- Pile-facing side of the plume preferentially samples material originating from the pile.
- The side of the plume facing away from the pile preferentially samples material originating from the thermal boundary layer.

ZONING OF GENERATED MELT

CONCLUSIONS

- ★ The (edges of) LLSVPs seem to be plume generation zones
- The asymmetry of chemical trends in ocean islands could originate from the LLSVPS, if:
 - LLSVPs are chemical reservoirs containing dense material
 - Subducted slabs arriving at the core-mantle boundary cause plumes to rise from the edges of these reservoirs
 - Plume temperatures are high so they can entrain dense material asymmetrically
- Zoning is reflected in the composition of volcanic islands if the overlying plate moves roughly perpendicular to the chemical gradient in the plume conduit.

RHEOLOGICAL HETEROGENEITIES: THE IMPORTANCE OF GRAIN SIZE EVOLUTION

Work with Z. Eilon, U. Faul, R. Gassmöller, P. Moulik, R. Myhill

GRAIN SIZE EVOLUTION

Deformation

Grain size reduction: Dynamic recrystallisation

Reaction

GRAIN SIZE EVOLUTION

Deformation

Reaction

Polymorphism: Coherent nucleation

Solomatov and Reese, 2008

Grain size reduction: Dynamic recrystallisation

Decomposition: Symplectite formation

Solomatov and Reese, 2008

GRAIN SIZE AND PHASE TRANSITIONS

EQUATIONS: STOKES, ENERGY BALANCE

$$-\nabla \cdot (2\eta \dot{\varepsilon}_{\kappa}(\mathbf{u})) + \nabla p = \rho \mathbf{g},$$

$$\nabla \cdot (\rho \mathbf{u}) = 0,$$

$$\rho C_p \left(\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T\right) - \nabla \cdot k \nabla T = 2\eta \dot{\varepsilon}_{\kappa}(\mathbf{u}) : \dot{\varepsilon}_{\kappa}(\mathbf{u}) + \alpha T (\mathbf{u} \cdot \nabla p) + Q$$

EQUATIONS: COMPOSITE RHEOLOGY

$$\begin{aligned} -\nabla \cdot (2\eta \dot{\varepsilon}_{\kappa}(\mathbf{u})) + \nabla p &= \rho \mathbf{g}, \\ \nabla \cdot (\rho \mathbf{u}) &= 0, \end{aligned}$$

$$\rho C_p \left(\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T \right) - \nabla \cdot k \nabla T &= 2\eta \dot{\varepsilon}_{\kappa}(\mathbf{u}) : \dot{\varepsilon}_{\kappa}(\mathbf{u}) + \alpha T (\mathbf{u} \cdot \nabla p) + Q \end{aligned}$$

$$\begin{aligned} \eta_{\text{diff}} &= \frac{1}{2} A^{-\frac{1}{n}} d^{\frac{m}{n}} \exp\left(\frac{E^* + PV^*}{nRT}\right) \\ \eta_{\text{dis}} &= \frac{1}{2} A^{-\frac{1}{n}} \dot{\varepsilon}_{\text{dis,II}}^{\frac{1-n}{n}} \exp\left(\frac{E^* + PV^*}{nRT}\right) \\ \eta_{\text{eff}} &= \frac{\eta_{\text{diff}} \eta_{\text{dis}}}{\eta_{\text{diff}} + \eta_{\text{dis}}} \end{aligned}$$
Diffusion creep (grain-size dependent)
$$\begin{aligned} \text{Dislocation creep} (\text{stress/strain-rate dependent}) \end{aligned}$$

EQUATIONS: COMPOSITE RHEOLOGY

$$-\nabla \cdot (2\eta \dot{\varepsilon}_{\kappa}(\mathbf{u})) + \nabla p = \rho \mathbf{g},$$

$$\nabla \cdot (\rho \mathbf{u}) = 0,$$

$$\rho C_p \left(\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T\right) - \nabla \cdot k \nabla T = 2\eta \dot{\varepsilon}_{\kappa}(\mathbf{u}) : \dot{\varepsilon}_{\kappa}(\mathbf{u}) + \alpha T (\mathbf{u} \cdot \nabla p) + Q$$

$$\begin{aligned} \eta_{\text{diff}} &= \frac{1}{2} A^{-\frac{1}{n}} d^{\frac{m}{n}} \exp\left(\frac{E^* + PV^*}{nRT}\right) & \text{Diffusion creep} \\ (\text{grain-size dependent}) \\ \eta_{\text{dis}} &= \frac{1}{2} A^{-\frac{1}{n}} \dot{\varepsilon}_{\text{dis,II}}^{\frac{1-n}{n}} \exp\left(\frac{E^* + PV^*}{nRT}\right) & \text{Dislocation creep} \\ (\text{stress/strain-rate dependent}) \\ \eta_{\text{eff}} &= \frac{\eta_{\text{diff}} \eta_{\text{dis}}}{\eta_{\text{diff}} + \eta_{\text{dis}}} & \text{Grain size evolution} \\ \left(\frac{\partial d}{\partial t} + \mathbf{u} \cdot \nabla d\right) &= p_g^{-1} d^{1-p_g} k_g \exp\left(-\frac{E_g + PV_g}{RT}\right) & \text{Grain growth} \\ &-4 \dot{\varepsilon}_{\text{II}} \dot{\varepsilon}_{\text{dis}} \eta_{\text{eff}} \frac{\lambda d^2}{c\gamma}, & \text{Grain size reduction} \end{aligned}$$

HOW GRAIN SIZE AFFECTS DEFORMATION

See also: **Dannberg, J.,** Eilon, Z., Faul, U., Gassmöller, R., Moulik, P., & Myhill, R. (2017). The importance of grain size to mantle dynamics and seismological observations. *Geochemistry, Geophysics, Geosystems*, 18(8), 3034-3061.

30

HOW GRAIN SIZE AFFECTS DEFORMATION

See also: **Dannberg, J.,** Eilon, Z., Faul, U., Gassmöller, R., Moulik, P., & Myhill, R. (2017). The importance of grain size to mantle dynamics and seismological observations. *Geochemistry, Geophysics, Geosystems,* 18(8), 3034-3061.

HOW GRAIN SIZE AFFECTS DEFORMATION

See also: **Dannberg, J.,** Eilon, Z., Faul, U., Gassmöller, R., Moulik, P., & Myhill, R. (2017). The importance of grain size to mantle dynamics and seismological observations. *Geochemistry, Geophysics, Geosystems,* 18(8), 3034-3061.

32

IMPORTANCE OF GRAIN SIZE

Important for:

- Convection regime of terrestrial planets (breaking the stagnant lid; Rozel 2012)
- Channeling melt to mid-ocean ridges (Turner et al., 2017)
- Collapse of passive margins (Mulyukova & Bercovici, 2018)
- ✤ Icy satellites, ...

Turner at al., 2017

Rozel, 2012

GRAIN SIZE EVOLUTION IN THE MANTLE

Upper mantle:

- Dislocation creep is dominant deformation mechanism
- Interplay of grain growth and grain size reduction

Grain size reset

at ringwoodite —> bridgmanite + ferropericlase transition

Lower mantle

- Diffusion creep is dominant deformation mechanism
- Grain growth is dominant,
 and depends on time spent in
 lower mantle

HOW GRAIN SIZE AFFECTS FLOW

Simple (diffusion creep) rheology

Grain size dependent rheology

GRAIN SIZE EVOLUTION IN SLABS

(c) Evolving grain size, LM $V_{diff} = 2e-6$

(d) Evolving grain size, LM $V_{diff} = 2e-6$

(e) Evolving grain size, LM $V_{diff} = 1.5e-6$

(f) Evolving grain size, LM $V_{diff} = 1.5e-6$

(g) Evolving grain size, faster LM growth

(h) Evolving grain size, faster LM growth

- Small parameter
 variations
 change model
 behavior
 significantly
- Qualitatively:
 bending instead
 of internal
 deformation

MODEL EVOLUTION

INFLUENCE OF GRAIN SIZE ON VISCOSITY

CONCLUSIONS

- Dynamically evolving grain size in mantle convection models leads to high lateral viscosity contrasts and strong shear localization
- In the lower mantle, viscosity may depend on how long ago material has crossed phase transitions
- Viscosity at the edges of thermal plumes is lower than within, despite lower temperatures
- Results qualitative, but grain size is a crucial control
- Better constraints on grain growth and parameters in viscosity laws are needed

HETEROGENEITIES CAUSED BY MANTLE MELTING

Implications for ULVZs

Work with R. Myhill, R. Gassmöller, S. Cottaar

HETEROGENEITY: MID-OCEAN RIDGE

depletion porosity

-0

0

SIMPLE MANTLE MELTING MODEL

Composition —

SIMPLE MANTLE MELTING MODEL

Composition ——

HETEROGENEITY: MID-OCEAN RIDGE

 Melting, melt transport and freezing of melt introduce chemical heterogeneities.

 Partially molten material is weaker than solid rock.

The presence of melt can make grain growth faster.

INFLUENCE ON GLOBAL CONVECTION

No melt migration

With melt migration

GLOBAL CONVECTION: DENSITY

Crystallized melt (enriched material) is denser, Depleted material is less dense: $\rho_s = \rho_0 + C \Delta \rho$

ULVZS

The lowermost mantle:

From McNamara, 2019

Observations:

- Thin patches just above the coremantle boundary
- Velocity reductions of up to 30%
- Located at the edges of LLSVPs and/or at the base of plume conduits
- large aspect ratio,
 (100s-1000 km wide;
 10-30 km thick)

CAUSE OF VELOCITY REDUCTION

Compositional: Fe enrichment

Thermal: Partially molten

Hernlund & Jellinek, 2010

Both of the above

- Fe-enrichment can melt more easily
- Partial melt will be Fe-enriched

HYPOTHESIS: IRON ENRICHMENT

Li at al., 2017

HYPOTHESIS: PARTIAL MELT

ULVZs contain partial melt which is constrained to a thin layer above the core-mantle boundary

- Viscous drag at the base of plumes introduces upwards flow
- Melt is dense and segregates downwards

Work with Robert Myhill, Sanne Cottaar, Rene Gassmöller

EXISTING MODELS

Matrix Stress-Driven Separation Gravity-Driven Separation

0% 100% 100% Liquid Fraction

J.W. Hernlund, A.M. Jellinek / Earth and Planetary Science Letters 296 (2010) 1–8

IMPORTANT PROCESSES

MELTING MODEL

Figure and Modified melting model: R. Myhill

EQUATIONS: MAGMA/MANTLE DYNAMICS

Mass conservation

$$\frac{\partial}{\partial t} \left[\rho_f \phi \right] + \nabla \cdot \left[\rho_f \phi \mathbf{u}_f \right] = \Gamma$$
$$\frac{\partial}{\partial t} \left[\rho_s (1 - \phi) \right] + \nabla \cdot \left[\rho_s (1 - \phi) \mathbf{u}_s \right] = -\Gamma$$

Solid and fluid mass are conserved.

EQUATIONS: MAGMA/MANTLE DYNAMICS

0

Mass conservation

$$\frac{\partial}{\partial t} \left[\rho_f \phi \right] + \nabla \cdot \left[\rho_f \phi \mathbf{u}_f \right] = \Gamma$$
$$\frac{\partial}{\partial t} \left[\rho_s (1 - \phi) \right] + \nabla \cdot \left[\rho_s (1 - \phi) \mathbf{u}_s \right] = -\Gamma$$

Momentum conservation

$$\phi\left(\mathbf{u}_{f}-\mathbf{u}_{s}\right)=-K_{D}\left(\nabla p_{f}-\rho_{f}\mathbf{g}\right)$$

$$-\nabla \cdot \left[2\eta^* \left(\varepsilon(\mathbf{u}_s) - \frac{1}{3}(\nabla \cdot \mathbf{u}_s)\mathbf{1}\right) + \xi^* (\nabla \cdot \mathbf{u}_s)\mathbf{1}\right] + \nabla p_f = \bar{\rho}\mathbf{g}$$

Energy conservation

$$\rho C_p \left(\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T \right) - \nabla \cdot k \nabla T = \dots \text{ (source terms)}$$

Chemical composition (n equations)

$$\frac{\partial \mathbf{c}(t)}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{c}(t) = q(\mathbf{c}(t))$$

u_{s,f} solid, fluid velocity φ porosity p_f fluid pressure p_c compaction pressure ρ_{s,f} density **g** gravity Γ melting rate

HETEROGENEITY: LOWERMOST MANTLE

PRELIMINARY RESULTS

Geodynamic model

PRELIMINARY RESULTS

CONCLUSIONS

Mantle melting influences mantle heterogeneity by:

- Changing mantle viscosity
- Introducing chemical heterogeneities
- Influencing grain growth
- May even be important in the lower mantle: potential explanation for ULVZs

I AM STARTING A GROUP...

...at University of Florida:

- 2 postdoc positions
- funding for 1 PhD student

Contact me: juliane.dannberg@ufl.edu

Assistant Professor

UF Department of Geological Sciences UNIVERSITY of FLORIDA

Email: juliane.dannberg <at> ufl.edu

bttps://orcid.org/0000-0003-0357-7115

Advanced Solver for Problems in Earth's ConvecTion

