Ada Lovelace Workshop 2019, Siena, Italy

The iron spin transition

Identification and implications for mantle dynamics

Grace E. Shephard grace.shephard@geo.uio.no

Centre for Earth Evolution and Dynamics (CEED) University of Oslo, Norway

The iron spin transition

Identification and implications for mantle dynamics

Christine Houser

John Hernlund

Renata

Wenzkovitch

Reidar Trønnes

Juan Valencia-Cardona

Aim of this study

- Ferropericlase ~20% lower mantle
- Iron in Fp undergoes a <u>spin</u> <u>transition</u>
- Experimentally proven but not readily apparent in seismic data

Why not

Are mineral physics predictions wrong? Seismic resolution poor? Is there not enough Fp?

Aim of this study

Spin changes thermo-elastic properties and convective behaviour:

Slabs

May stall, reorganise or avalanche (e.g. Morra et al. 2010, Shahnas et al., 2011)

• Plumes

May enhance vigour, plume head dynamics (e.g. Bower et al., 2009; Shahnas et al., 2011; Justo et al., 2015)

• LLSVPs

May enhance boundaries and stability, or not. (e.g. Huang et al. 2015: Li et al., 2018)

Talk Overview

[1] Overview Mantle Structure and Composition

[2] Iron spin transition

- Mineral physics
 - Seismology

[3] Vote maps

[4] Geodynamic implications

BEAMS structures

Mantle structure and composition

Structure of the mantle

Lower mantle:

- Subducted slabs, mantle plumes, LLSVPs, ULVZs, recycled and primitive features
 - Mixing/mass transfer with upper mantle
 - Variable modes of convection

Structure of the mantle

Standard 1-D radial density and velocity models

- 'First order' phase changes leading to reflections
- Not within the lower mantle

References: Dziewonski et al. (1981); Kennett et al., (1995)

Composition of the mantle

Thought to be a pyrolite and if similar to upper mantle (Mg/Si ratio \sim 1.27):

- 80% (Mg,Fe)SiO₃ bridgmanite
- 20% (Mg,Fe)O ferropericlase
- Minor CaSiO₃
 Ca-perovskite (also ppv)
- Mg/Si, Mg/Fe, Ca/Al ratios an outstanding question, as well as Fe partitioning

Reidar Trønnes

Composition of the mantle

Bridgmanitic – Pyrolitic – Harzburgitic

Si rich(er) Bm rich, Fp poor(er) Imply distinct UM/LM Rheologically stronger (Mg+Fe)/(Si-Ca) ~ 1 Si poor(er) Fp rich(er) Implies mixing Rheologically variable (Mg+Fe)/(Si-Ca) > 1

Predicted seismic responses of different compositions greatly affected by temperature therefore not readily discriminated

Composition of the mantle

<u>Ferropericlase</u> (Mg,Fe)O

- A major host for iron in the lower mantle
- Fp requires (Mg+Fe)/(Si-Ca)>1
 i.e. olivine in addition to pyroxene
- Ferrous iron (Fe²⁺) cation undergoes electronic transition which affects elastic properties and therefore seismic response
 - Opportunity to constrain composition

So where to look for Fp?

• Slabs...

Fp-rich: 7% basalt and 93% depleted harzburgite Si-depleted, ~23% Fp

• Plumes...

recycled component, might also contain other Si-rich entrained components

• Ambient... possibly the least Fp

Things to disentangle (keep in mind)

Untangling relatively subtle signals caused by overlapping and/or unconstrained effects:

- Uncertainties in LM material properties, T and composition
- Effects on seismic velocities
- Other mid-mantle changes e.g. viscosity/density change
- Changes in subduction flux
- Influence from pPv and LLSVPs
- Plus others...

- First proposed by Fyfe (1960)
- Spin transition = pressure induced rearrangement of electrons and energy of chemical bonds ("spin pairing")
- Collapse of electron orbitals of iron (3d) from <u>high</u> to <u>low</u> spin state
 - Mixed spin/spin transition
- Reduces cation size (volume) changing physical properties of Fp

Speziale et al., 2005

- Experimentally confirmed by Badro et al. (2003)
 - ~60-70 GPa
 - ~1000-2200 km depth
 - ~1900-2300 K
 - Broad (unlike ordinary phase transitions)
- P-induced but also affected by mantle T and composition, and Fp composition and abundance

Lin et al. (2013)

Promoted by increasing pressure and decreasing temperature:

- Increasing width of the mixed phase region
- Cold geotherm: ~1400 km onset
- Hot geotherm: ~1700 km onset.
- Possible presence of mixed spin to CMB

Fe concentration of x=18.75% in FpMg(1-x)FexO
$$n_{\rm LS} = \frac{1}{1 + \exp(\Delta G(P,T)^*/T)}$$

FAQ: Why not in Bridgmanite?

- Different crystallographic and oxidation states.
- Role of AI (Fe⁺² \rightarrow Fe⁺³)
- Iron is part of Fp backbone, but not for Bm (SiO₆ octahedra are most important structural framework for Bm).

References: Lundin et al. (2008); Lin et al. (2008)

Xu et al. (2016)

Effects:

Significant effect on density (~1%)

Bulk modulus softens (!)

Little effect on shear modulus

- Changes in viscosity, radiative thermal conductivity, thermal expansion, heat capacity and creep activation parameters, enhancement of anisotropy, convective vigour etc.
- Changes iron partitioning and speciation (suppresses Fe³⁺ and metallic Fe formation)

Shahnas et al. (2016)

(K) Bulk modulus

The ratio of the increase in pressure to resulting fractional change in <u>volume</u>

 $-V \frac{dP}{dV}$ K =

- i.e. the compressibility of the material
- Volume change requires bulk modulus change (!)
- Dramatically softens during the spin cross-over
 - E.g. by ~250 GPa at 300 K for x =0.1875 (Wu et al., 2013)

Spin's seismic expectations

Seismology basics

Mapping of travel time curves to seismic velocities

- P-wave (V_P): Compressional/Dilational
- S-wave (V_S): Shear/Rotational
- Velocities depend on physical properties of the material; elastic moduli and density

$$\mathbf{V}_{\mathbf{P}} = \sqrt{\frac{K + \frac{4}{3}\mu}{\rho}} \qquad \mathbf{V}_{\mathbf{S}} = \sqrt{\frac{\mu}{\rho}}$$

Affected by temperature, pressure and composition

Spin's seismic predictions

Temperature:

In addition to shifting the pressure range of the spin transition

• Reduces sensitivity of V_P to lateral T variations

Spin's seismic predictions

Composition:

- Enhances sensitivity of V_{P} (and $V_{\Phi})$ to composition
 - Increasing Fe/(Fe+Mg) decreases all velocities and enhances effect on V_P

Spin's seismic predictions

In short:

- V_P expected to decrease in the transition
- V_S expected to stay the same

AND

- dV_P/dT decreases in the transition
- dV_S/dT expected to stay the same

Something's going on:

- Slab stagnation and plume disruption
 - Mid-mantle viscosity/density variation?
 - Dense MORB, Bm-enriched, Bm-dewatering?

Ballmer et al., 2015

Morra et al., 2010

References: Zhao (2007); van der Hilst and Karason (1999); Wu and Wentzkovitch (2014); Boschi et al. (2007); Masters (2000) and many others

Something's going on:

- Slab stagnation and plume disruption
 - Mid-mantle viscosity/density variation?
 - Dense MORB, Bm-enriched, Bm-dewatering?
- Spectral changes
 - Anti-correlation of V_{S} and V_{Φ} Not necessarily compositional change
 - V_P-V_S ratios

Morra et al., 2010 from Boschi et al., 2010 (SMEAN)

References: Zhao (2007); van der Hilst and Karason (1999); Wu and Wentzkovitch (2014); Boschi et al. (2007); Masters (2000) and many others

Something's going on:

- Slab stagnation and plume disruption
 - Mid-mantle viscosity/density variation?
 - Dense MORB, Bm-enriched, Bm-dewatering?
- Spectral changes
 - Anti-correlation of V_{S} and V_{Φ} Not necessarily compositional change

References: Zhao (2007); van der Hilst and Karason (1999); Wu and Wentzkovitch (2014) ; Boschi et al. (2007); Masters (2000) and many others

The upshot: hinted at but not clearly shown...

FAQ: So what are we doing differently?

Here we look into

- V_P and V_S – fast, slow, and ambient domains
- Multiple tomography models

 Avoiding those that are similar (e.g. joint inversions)
- Map out the behaviour laterally and radially

 Quantified in terms of surface area per depth

Seismic tomography

Seismic tomography

- 3-D velocity structure of the Earth
 - Different seismic phases, methods and approximations
 - Body wave travel times, surface wave dispersion, normal modes
- General agreement on broad structure
 - High velocities = slabs (positive anomalies)
 - Low velocities = plumes, LLSVPs (negative anomalies)
 - Vp and Vs similar resolution in mid-mantle

Ritsema et al. (2011) S40RTS

Linking surface and deep

Global, Regional, Absolute frame

Regional – Farallon

Van der Meer et al. (2010; 2013; 2017)

Sigloch and Mihalynuk, 2013

Regional – SE Indian

Simmons et al., 2015

Regional – South America

Chen et al., 2019

Shephard et al., 2014

Numerical modelling

Bull et al., 2009

Seismic tomography

Broad spectrum of models to use

Can be difficult to assess resolution and 'reality' of a given model at a given depth/location

While a Vp/Vs anomaly might result from parameterization choices etc

 \rightarrow unlikely to persist across numerous models

Doubrovine et al., 2016

Seismic tomography

Basically, does a given blue blob really warrant being identified as a slab?

Lekic et al. 2012 Cottaar and Lekic, 2016

Vote map method

Kara Matthews

Kasra Hosseini

Mathew Domeier

SCIENTIFIC REPORTS

OPEN On the consistency of seismically imaged lower mantle slabs

G. E. Shephard¹, K. J. Matthews², K. Hosseini² & M. Domeier¹

Shephard et al. (2017)

Shephard et al., 2017

Vote maps

1. Base tomography

Retain/**remove**/convert 6. Depth analysis For each depth: 2. Extract positive/negative values 5. Vote map 01 4. Combine 3. Contour

Applications

Geodynamics:

Mantle convection modelling Coltice and Shephard, 2018; JGR

Tectonics:

Origin of Hawaiian-Emperor Bend Domeier et al., 2017; Science Advances

SubMachine

Hosseini et al. (2018)

SubMachine

www.earth.ox.ac.uk/~smachine

Web-based tools for the interactive visualisation, analysis, and quantitative comparison of global-scale, volumetric (3-D) data sets of the subsurface

 \rightarrow

- Over 30 tomography models
- BYO Vote maps

Statistical analysis of seismic tomography models

P-wave models 📃	S-wave models	
Global tomography models		
🔲 GyPSuM-P*	GyPSuM-S*	
U HMSL-PO6*	HMSL-S06*	
PRI-P05	PRI-S05	
SP12RTS-P	SP12RTS-S	
🕞 SPani-P*	🔲 SPani-S*	
🗌 Hosseini2016	S20RTS	
GAP-P4*	S362ANI+M*	
ULNL_G3Dv3*	S40RTS	
MITP08*	SAVANI*	
MITP_USA_2011MAR*	SAW642ANb*	
MITP_USA_2016MAY*		
UU-P07*	SEMum*	
	SGLOBE-rani*	
	□ TX2011*	
	□ TX2015*	
	SEISGLOB1*	
	SEISGLOB2*	
Regional/depth restricted mod	els	
Sigloch_NAm_2011	3D201609Sv*	
	🕞 SL2013sv*	
	C 7aroli2016	

Vote maps

	P-wave models	S-wave models	
Hosseini et al., 2016/ Hosseini and Sigloch 2015	DETOX-P01	SEMUCB-WM1	French et al., 2014
Obayashi et al., 2013/ Fukao et al., 2013	GAP-P4	SAVANI	Auer et al., 2014
Houser et al., 2008	HMSL-P06	HMSL-S06	Houser et al., 2008
Burdick et al., 2012	MITP_2011	S40RTS	Ritsema et al. 2011

body ± surface ± normal modes ± waveform inversions

0.5° grid spacing 50 km increments Processed with GMT v5.3.1

Vote maps

Fast anomalies

contour >+1σ 1800 km

Vote maps – contour

Fast anomalies

-waves

S-waves

Vote maps – contour

Slow anomalies

P-waves

Fast anomalies

Influence of sigma

>+0.75o

Fast anomalies $V_{P}-V_{S}$

S-wave

votes

400 k

Slow anomalies

Slow anomalies

Ambient "anomalies" ±0.5σ

1400 km

2800 km

Surface area calculations

1400 km

Surface area calculations

Surface area fast anomalies

Change in coverage

Fast anomalies

Number of models

Change in coverage

Change in coverage

Different tomography combos

Change in coverage

Ambient mapping

Ambient mapping

BEAMS (Bm-enriched ambient mantle structures) model; Ballmer et al (2015, 2017)

Ambient mapping

EGU GD Blog Weekly blog posts (Wednesdays)

Looking for guest authors!

Speak to: Diogo Lorenço Antoine Rozel Anna Gülcher Anne Glerum Tobias Meier

Scientific Colour Maps

www.fabiocrameri.ch/ colourmaps.php

Crameri (2018)

www.fabiocrameri.ch

Conclusions

Changes in volume necessitate changes in bulk modulus Spin transition can be detected by evaluating multiple Vp and Vs

- tomography models – Below ~1400 km in fast/cold regions
- Below ~1700 km in slow/warm regions

Ambient mantle likely contains little Fp – SiO₂ enriched

- Consistent with the BEAMS model

